题目内容
2.分析 根据菱形的性质得AC平分∠BAD,AD∥BC,则∠BAC=∠DAC=50°,即∠BAD=100°,然后利用两直线平行,同旁内角互补求∠ABC的度数.
解答 解:∵四边形ABCD为菱形,
∴AC平分∠BAD,AD∥BC,
∴∠BAC=∠DAC=50°,
∴∠BAD=100°,
∵AD∥BC,
∴∠ABC+∠BAD=180°,
∴∠ABC=80°.
故答案为80°.
点评 本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
练习册系列答案
相关题目
10.在直角坐标系中,O为原点,点A坐标为(1,2),则直线y=3x+1沿射线OA平移$\sqrt{5}$个单位后的解析式为( )
| A. | $y=3x-\sqrt{5}$ | B. | y=3x | C. | y=3x-1 | D. | $y=3x+\sqrt{5}$ |
17.下列计算正确的是( )
| A. | a2•a3=a6 | B. | (-a3)2=-a6 | C. | $\sqrt{2}+\sqrt{3}=\sqrt{5}$ | D. | -22-3=-7 |
7.已知三角形的两边a=3,b=7,第三边是c,则c的取值范围是( )
| A. | 4<c<7 | B. | 7<c<10 | C. | 4<c<10 | D. | 7<c<13 |
14.
小龙在学校组织的社会调查活动中负责了解他所居住的小区480户居民的家庭收入情况.他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.
根据以上提供的信息,解答下列问题:
(1)补全频数分布表.
(2)补全频数分布直方图.
(3)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?
| 分组 | 频数 | 百分比 |
| 600≤x<800 | 2 | 5% |
| 800≤x<1000 | 6 | 15% |
| 1000≤x<1200 | a | 45% |
| 1200≤x<1400 | 9 | 22.5% |
| 1400≤x<1600 | b | c |
| 1600≤x<1800 | 2 | d |
| 合计 | 40 | 100% |
(1)补全频数分布表.
(2)补全频数分布直方图.
(3)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?