题目内容
17.一枚均匀的骰子,六个面分别标有1,2,3,4,5,6,连续抛掷两次朝上的两个数为m,n.(1)求m+n=7的概率;
(2)把(m,n)作为A的坐标,求点在双曲线y=$\frac{6}{x}$上的概率.
分析 (1)列表得出所有等可能的情况数,找出m+n=7的情况数,即可求出所求的概率;
(2)找出mn=6的情况数,即可求出所求的概率.
解答 解:(1)列表如下:
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 1 | (1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) |
| 2 | (1,2) | (2,2) | (3,2) | (4,2) | (5,2) | (6,2) |
| 3 | (1,3) | (2,3) | (3,3) | (4,3) | (5,3) | (6,3) |
| 4 | (1,4) | (2,4) | (3,4) | (4,4) | (5,4) | (6,4) |
| 5 | (1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
| 6 | (1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
则P=$\frac{6}{36}$=$\frac{1}{6}$;
(2)其中mn=6的情况有4种,
则点在双曲线y=$\frac{6}{x}$上的概率为$\frac{4}{36}$=$\frac{1}{9}$.
点评 此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关题目
12.已知菱形ABCD,点E、F分别在BC、CD上,且△AEF恰为等边三角形,其边长与菱形边长相等,则∠AEB的大小是( )
| A. | 60° | B. | 95° | C. | 80° | D. | 75° |
6.组数为三角形的三边.其中,能构成直角三角形的是( )
| A. | $\sqrt{3}$、$\sqrt{4}$、$\sqrt{5}$ | B. | 32、42、52 | C. | $\frac{1}{3}$、$\frac{1}{4}$、$\frac{1}{5}$ | D. | 3k、4k、5k(k≠0) |