题目内容

17.已知,在平行四边形ABCD中,E为AD上一点,且AB=AE,连接BE交AC于点H,过点A作AF⊥BC于F,交BE于点G.
(1)若∠D=50°,求∠EBC的度数;
(2)若AC⊥CD,过点G作GM∥BC交AC于点M,求证:AH=MC.

分析 (1)根据等边对等角以及平行线的性质,即可得到∠1=∠2=$\frac{1}{2}$∠ABC,再根据平行四边形ABCD中,∠D=50°=∠ABC,可得出∠EBC的度数;
(2)过M作MN⊥BC于N,过G作GP⊥AB于P,则∠CNM=∠APG=90°,先根据AAS判定△BPG≌△BFG,得到PG=GF,根据矩形GFNM中GF=MN,即可得出PG=NM,进而判定△PAG≌△NCM(AAS),可得AG=CM,再根据等角对等边得到AH=AG,即可得到结论.

解答 解:(1)∵AB=AE,
∴∠1=∠3,
∵AE∥BC,
∴∠2=∠3,
∴∠1=∠2=$\frac{1}{2}$∠ABC,
又∵平行四边形ABCD中,∠D=50°,
∴∠ABC=50°,
∴∠EBC=25°;

(2)证明:如图,过M作MN⊥BC于N,过G作GP⊥AB于P,则∠CNM=∠APG=90°,
由(1)可得,∠1=∠2,
∵AF⊥BC,
∴∠BPG=∠BFG=90°,
在△BPG和△BFG中,
$\left\{\begin{array}{l}{∠CNM=∠APG}\\{∠1=∠2}\\{BG=BG}\end{array}\right.$,
∴△BPG≌△BFG(AAS),
∴PG=GF,
又∵矩形GFNM中,GF=MN,
∴PG=NM,
∵AC⊥CD,CD∥AB,
∴∠BAC=90°=∠AFB,
即∠PAG+∠ABF=∠NCM+∠ABC=90°,
∴∠PAG=∠NCM,
在△PAG和△NCM中,
$\left\{\begin{array}{l}{∠PAG=∠NCM}\\{∠CNM=∠APG}\\{PG=NM}\end{array}\right.$,
∴△PAG≌△NCM(AAS),
∴AG=CM,
∵∠1=∠2,∠BAH=∠BFG,
∴∠AHG=∠FGB=∠AGH,
∴AG=AH,
∴AH=CM.

点评 本题主要考查了平行四边形的性质,全等三角形的判定与性质以及等腰三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,依据全等三角形的对应边相等进行推理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网