ÌâÄ¿ÄÚÈÝ
4£®¡°2015ÑïÖݼøÕæ¹ú¼Ê°ë³ÌÂíÀËÉ¡±µÄÈüʹ²ÓÐÈýÏA¡¢¡°°ë³ÌÂíÀËÉ¡±¡¢B¡¢¡°10¹«À¡¢C¡¢¡°ÃÔÄãÂíÀËÉ¡±£®Ð¡Ã÷²Î¼ÓÁ˸ÃÏîÈüʵÄÖ¾Ô¸Õß·þÎñ¹¤×÷£¬×éί»áËæ»ú½«Ö¾Ô¸Õß·ÖÅäµ½Èý¸öÏîÄ¿×飮£¨1£©Ð¡Ã÷±»·ÖÅäµ½¡°ÃÔÄãÂíÀËÉ¡±ÏîÄ¿×éµÄ¸ÅÂÊΪ$\frac{1}{3}$£®
£¨2£©Îª¹ÀËã±¾´ÎÈüʲμӡ°ÃÔÄãÂíÀËÉ¡±µÄÈËÊý£¬Ð¡Ã÷¶Ô²¿·Ö²ÎÈüÑ¡ÊÖ×÷Èçϵ÷²é£º
| µ÷²é×ÜÈËÊý | 50 | 100 | 200 | 500 | 1000 |
| ²Î¼Ó¡°ÃÔÄãÂíÀËÉ¡±ÈËÊý | 21 | 45 | 79 | 200 | 401 |
| ²Î¼Ó¡°ÃÔÄãÂíÀËÉ¡±ÆµÂÊ | 0.360 | 0.450 | 0.395 | 0.400 | 0.401 |
¢ÚÈô±¾´Î²ÎÈüÑ¡ÊÖ´óÔ¼ÓÐ30000ÈË£¬ÇëÄã¹À¼Æ²Î¼Ó¡°ÃÔÄãÂíÀËÉ¡±µÄÈËÊýÊǶàÉÙ£¿
·ÖÎö £¨1£©ÀûÓøÅÂʹ«Ê½Ö±½ÓµÃ³ö´ð°¸£»
£¨2£©¢ÙÀûÓñí¸ñÖÐÊý¾Ý½ø¶ø¹À¼Æ³ö²Î¼Ó¡°ÃÔÄãÂíÀËÉ¡±ÈËÊýµÄ¸ÅÂÊ£»
¢ÚÀûÓâÙÖÐËùÇ󣬽ø¶øµÃ³ö²Î¼Ó¡°ÃÔÄãÂíÀËÉ¡±µÄÈËÊý£®
½â´ð ½â£º£¨1£©¡ßСÃ÷²Î¼ÓÁ˸ÃÏîÈüʵÄÖ¾Ô¸Õß·þÎñ¹¤×÷£¬×éί»áËæ»ú½«Ö¾Ô¸Õß·ÖÅäµ½Èý¸öÏîÄ¿×飬
¡àСÃ÷±»·ÖÅäµ½¡°ÃÔÄãÂíÀËÉ¡±ÏîÄ¿×éµÄ¸ÅÂÊΪ£º$\frac{1}{3}$£»
¹Ê´ð°¸Îª£º$\frac{1}{3}$£»
£¨2£©¢ÙÓɱí¸ñÖÐÊý¾Ý¿ÉµÃ£º±¾´ÎÈüʲμӡ°ÃÔÄãÂíÀËÉ¡±ÈËÊýµÄ¸ÅÂÊΪ£º0.4£»
¹Ê´ð°¸Îª£º0.4£»
¢Ú²Î¼Ó¡°ÃÔÄãÂíÀËÉ¡±µÄÈËÊýÊÇ£º30000¡Á0.4=12000£¨ÈË£©£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁËÀûÓÃÆµÂʹÀ¼Æ¸ÅÂÊ£¬ÕýÈ·Àí½âƵÂÊÓë¸ÅÂÊÖ®¼äµÄ¹ØÏµÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®
Èçͼ£¬Ôڱ߳¤Îª6µÄÕý·½ÐÎABCDÖУ¬EÊÇABµÄÖе㣬ÒÔEΪԲÐÄ£¬EDΪ°ë¾¶×÷°ëÔ²£¬½»A¡¢BËùÔÚµÄÖ±ÏßÓÚM¡¢NÁ½µã£¬·Ö±ðÒÔÖ±¾¶MD¡¢NDΪֱ¾¶×÷°ëÔ²£¬ÔòÒõÓ°²¿·ÖÃæ»ýΪ£¨¡¡¡¡£©
| A£® | 9$\sqrt{5}$ | B£® | 18$\sqrt{5}$ | C£® | 36$\sqrt{5}$ | D£® | 72$\sqrt{5}$ |
15£®¼ÆË㣺
£¨1£©2$\sqrt{3}$+3$\sqrt{12}$-$\sqrt{48}$
£¨2£©£¨$\sqrt{3}$-2£©2-$\sqrt{3}$¡Á$\sqrt{12}$£®
£¨1£©2$\sqrt{3}$+3$\sqrt{12}$-$\sqrt{48}$
£¨2£©£¨$\sqrt{3}$-2£©2-$\sqrt{3}$¡Á$\sqrt{12}$£®
19£®Ä³Ð£Ñо¿ÐÔѧϰС×éÔÚѧϰ¶þ´Î¸ùʽ$\sqrt{{a}^{2}}$=|a|Ö®ºó£¬Ñо¿ÁËÈçÏÂËĸöÎÊÌ⣬ÆäÖдíÎóµÄÊÇ£¨¡¡¡¡£©
| A£® | ÔÚa£¾1µÄÌõ¼þÏ»¯¼ò´úÊýʽa+$\sqrt{{a}^{2}-2a+1}$µÄ½á¹ûΪ2a-1 | |
| B£® | µ±a+$\sqrt{{a}^{2}-2a+1}$µÄÖµºãΪ¶¨ÖµÊ±£¬×ÖĸaµÄȡֵ·¶Î§ÊÇa¡Ü1 | |
| C£® | a+$\sqrt{{a}^{2}-2a+1}$µÄÖµËæa±ä»¯¶ø±ä»¯£¬µ±aȡij¸öÊýֵʱ£¬ÉÏÊö´úÊýʽµÄÖµ¿ÉÒÔΪ$\frac{1}{2}$ | |
| D£® | Èô$\sqrt{{a}^{2}-2a+1}$=£¨$\sqrt{a-1}$£©2£¬Ôò×Öĸa±ØÐëÂú×ãa¡Ý1 |