题目内容
16.已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,
①线段CD和BE的数量关系是CD=BE;
②请写出线段AD,BE,DE之间的数量关系并证明.
(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.
分析 (1)①结论:CD=BE.②结论:AD=BE+DE,只要证明△ACD≌△CBE,即可解决问题.
(2)结论不成立.结论:DE=AD+BE.证明方法类似(1).
解答 解:(1)①结论:CD=BE.
理由:∵AD⊥CM,BE⊥CM,
∴∠ACB=∠BEC=∠ADC=90°,
∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠B,
在△ACD和△CBE中,![]()
$\left\{\begin{array}{l}{∠ADC=∠BEC}\\{∠ACD=∠B}\\{AC=CB}\end{array}\right.$,
∴△ACD≌△CBE,
∴CD=BE.
②结论:AD=BE+DE.
理由:∵△ACD≌△CBE,
∴AD=CE,CD=BE,
∵CE=CD+DE=BE+DE,
∴AD=BE+DE.
(2)②中的结论不成立.结论:DE=AD+BE.
理由:∵AD⊥CM,BE⊥CM,
∴∠ACB=∠BEC=∠ADC=90°,
∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠B,
在△ACD和△CBE中,
$\left\{\begin{array}{l}{∠ADC=∠BEC}\\{∠ACD=∠B}\\{AC=CB}\end{array}\right.$,
∴△ACD≌△CBE,
∴AD=CE,CD=BE,
∵DE=CD+CE=BE+AD,
∴DE=AD+BE.
点评 本题考查全等三角形的判定和性质、等角的余角相等等知识,解题的关键是学会证明角相等的方法,熟练掌握全等三角形的判定和性质,属于中考常考题型.
练习册系列答案
相关题目
6.把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )
| A. | y=-(x-1)2+3 | B. | y=-(x+1)2+3 | C. | y=-(x+1)2-3 | D. | y=-(x-1)2-3 |
8.
如图是一个正方体的展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是( )
| A. | 梦 | B. | 的 | C. | 国 | D. | 中 |