题目内容

18.如图:在△ABC中,点D为BC边上的中点,连接AD,点E为线段AD上的一点,连接CE,过点B作BF∥CE交AD的延长线于点F,求证:CE=BF.

分析 由已知条件“过点C、B作AD及其延长线的垂线”易证两个直角相等;再由AD是中线知BD=CD,对顶角∠BDF与∠CDE相等,利用“AAS”来证明△BDF≌△CDE;最后根据全等三角形的对应边相等来证明BF=CE.

解答 证明:∵CE∥BF,
∴∠CED=∠BFD,
∵D为BC的中点,
∴BD=CD,
在△CED和△BFD中
$\left\{\begin{array}{l}{∠CED=∠BFD}\\{∠CDE=∠BDF}\\{CD=BD}\end{array}\right.$,
∴△CED≌△BFD(AAS),
∴CE=BF.

点评 本题考查了全等三角形的判定与性质,关键是通过平行线的判定定理(在同一平面内,垂直于同一条线段的两条直线平行)证明CE∥BF,然后通过平行线的性质(两直线平行,内错角相等)求得∠DBF=∠DCE才能构建是全等三角形△BDF≌△CDE.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网