题目内容
16.化简:(1)(2a+b)2-(5a+b)(a-b)+2(a-b)(a+b)
(2)$\frac{x-2}{{x}^{2}-2x+1}$÷($\frac{2x-1}{x-1}$-x-1)-$\frac{1}{x}$.
分析 (1)先去括号,再合并同类项即可;
(2)先算括号里面的,再算除法,最后算减法即可.
解答 解:(1)原式=4a2+b2+4ab-(5a2-5ab+ab-b2)+2(a2-b2)
=4a2+b2+4ab-5a2+4ab+b2+2a2-2b2
=a2+8ab;
(2)原式=$\frac{x-2}{(x-1)^{2}}$÷$\frac{2x-{x}^{2}}{x-1}$-$\frac{1}{x}$
=$\frac{x-2}{{(x-1)}^{2}}$•$\frac{x-1}{-x(x-2)}$-$\frac{1}{x}$
=-$\frac{1}{x(x-1)}$-$\frac{x-1}{x(x-1)}$
=$\frac{-1-x+1}{x(x-1)}$
=-$\frac{1}{x-1}$.
点评 本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.
练习册系列答案
相关题目