题目内容
5.分析 根据切线的性质得出∠PAO=∠PBO=90°,求出∠AOB=140°,根据弧长公式求出即可.
解答 解:∵PA和PB是⊙O的切线,点A和点B是切点,
∴∠PAO=∠PBO=90°,
∵∠P=40°,
∴∠AOB=360°-90°-90°-40°=140°,
∴$\widehat{AB}$的长为$\frac{140π×9}{180}$=7π,
故答案为:7π
点评 本题考查了切线的性质,弧长公式的应用,能根据切线的性质求出∠PAO=∠PBO=90°是解此题的关键,注意:圆的切线垂直于过切点的半径.
练习册系列答案
相关题目
13.小明用下面的方法求出方程2$\sqrt{x}$-3=0的解,请你仿照他的方法求出下面两外两个方程的解,并把你的解答过程填写在下面的表格中.
| 方程 | 换元法得新方程 | 解新方程 | 检验 | 求原方程的解 |
| 2$\sqrt{x}$-3=0 | 令$\sqrt{x}$=t,则2t-3=0 | t=$\frac{3}{2}$ | t=$\frac{3}{2}>0$ | $\sqrt{x}$=$\frac{3}{2}$,所以x=$\frac{9}{4}$ |
| x+2$\sqrt{x}$-3=0 | 令$\sqrt{x}$=t,则t2+2t-3=0 | t=-3或t=1 | t=-3<0,t=1>0 | $\sqrt{x}$=1,所以x=1 |
| x+$\sqrt{x-2}-4=0$ | 令$\sqrt{x-2}$=t,则t2+t-2=0 | t=-2或t=1 | t=-2<0,t=1>0 | $\sqrt{x-2}$=1,所以x=3 |
15.自成都地铁4号线开通以来,成都地铁1、2、4号线线网客流增加明显,再遇到春季糖酒会、桃花节、通勤客流等三股主要客流汇集,2016年3月25日,成都地铁再创单日线网客流历史新高,达到1738200乘次,用科学记数法表示1738200为(保留三个有效数字)( )
| A. | 1.74×106 | B. | 1.73×106 | C. | 17.4×105 | D. | 17.3×105 |