ÌâÄ¿ÄÚÈÝ

4£®ÒÑÖªÅ×ÎïÏßy=$\frac{1}{2}$x2+2£¨m+1£©x-m+1ÓëxÖá½»ÓÚµãA¡¢B£¬ÓëyÖá½»ÓÚµãC£¬Æä¶Ô³ÆÖáÊÇÖ±Ïßx=4£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽÊǶ¥µã×ø±ê£»
£¨2£©ÇóCµãµÄ×ø±ê¼°¡÷ABCµÄÃæ»ý£»
£¨3£©ÒÑÖªÓëxÖáÆ½ÐеÄÖ±Ïßy=t¼°Å×ÎïÏß¶Ô³ÆÖáÉϵĵãD£¨4£¬t+1£©£¬ÎÊÊÇ·ñ´æÔÚÕâÑùµÄtÖµ£¬Ê¹µÃÅ×ÎïÏßÉÏÈÎÒâÒ»µãP£¨a£¬b£©µ½ÕâÌõÖ±ÏߵľàÀëµÈÓÚPµãµ½DµãµÄ¾àÀ룿Èô´æÔÚ£¬ÔòÇëÇó³ötµÄÖµ£»Èô²»´æÔÚ£¬Ôò˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓɶԳÆÖáx=-$\frac{b}{2a}$£¬ÇóµÃmµÄÊýÖµ£¬µÃ³öº¯Êý½âÎöʽ£¬ÔÙ½øÒ»²½ÇóµÃ¶¥µã×ø±ê¼´¿É£»
£¨2£©Áîx=0ÇóµÃÓëyÖá½»µãCµÄ×ø±ê£¬Áîy=0µÃ³öÓëxÖá½»µãµÄA¡¢BÁ½¸ö×ø±ê£¬½øÒ»²½ÇóµÃ¡÷ABCµÄÃæ»ý¼´¿É£»
£¨3£©Éè³öµãPµÄ×ø±ê£¬ÀûÓÃÁ½µãÖ®¼äµÄ¾àÀëÇóµÃPE¡¢PD£¬ÁªÁ¢·½³Ì£¬ÇóµÃtµÄÊýÖµ£¬Ôò´æÔÚ£¬·ñÔò²»´æÔÚ£®

½â´ð ½â£º£¨1£©ÓÉx=-2£¨m+1£©=4£¬
½âµÃm=-3£¬
ËùÒÔÅ×ÎïÏß½âÎöʽΪy=$\frac{1}{2}$x2-4x+4£¬¶¥µã×ø±êΪ£¨4£¬-4£©£»
£¨2£©Å×ÎïÏßy=$\frac{1}{2}$x2-4x+4ÓëyÖá½»ÓÚµãCµÄ×ø±êΪ£¨0£¬4£©£¬
Áîy=$\frac{1}{2}$x2-4x+4=0£¬
½âµÃ£ºx1=4+2$\sqrt{2}$£¬x2=4-2$\sqrt{2}$£¬
µãAµÄ×ø±êΪ£¨4-2$\sqrt{2}$£¬0£©£¬BµÄ×ø±êΪ£¨4+2$\sqrt{2}$£¬0£©£¬
Òò´Ë¡÷ABCµÄÃæ»ý=$\frac{1}{2}$¡Á4¡Á4$\sqrt{2}$=8$\sqrt{2}$£»
£¨3£©´æÔÚÕâÑùµÄtÖµ£¬Ê¹µÃÅ×ÎïÏßÉÏÈÎÒâÒ»µãP£¨a£¬b£©µ½ÕâÌõÖ±ÏߵľàÀëµÈÓÚPµãµ½DµãµÄ¾àÀ룮
ÉèPµãµÄ×ø±êΪ£¨m£¬$\frac{1}{2}$m2-4m+4£©£¬µãD£¨4£¬t+1£©£¬
PE=$\frac{1}{2}$m2-4m+4-t£¬
PD=$\sqrt{£¨4-m£©^{2}+[t+1-£¨\frac{1}{2}{m}^{2}-4m+4£©]^{2}}$
Ôò$\frac{1}{2}$m2-4m+4-t=$\sqrt{£¨4-m£©^{2}+[t+1-£¨\frac{1}{2}{m}^{2}-4m+4£©]^{2}}$£¬
½âµÃ£ºt=-$\frac{9}{2}$£¬
Òò´Ëµ±t=-$\frac{9}{2}$ʹµÃÅ×ÎïÏßÉÏÈÎÒâÒ»µãP£¨a£¬b£©µ½ÕâÌõÖ±ÏߵľàÀëµÈÓÚPµãµ½DµãµÄ¾àÀ룮

µãÆÀ ´ËÌ⿼²é¶þ´Îº¯ÊýµÄ×ÛºÏÊÔÌ⣬´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽÓë×ø±êÖáµÄ½»µã×ø±ê£¬Á½µãÖ®¼äµÄ¾àÀ빫ʽ£¬×¢ÒâÊýÐνáºÏ˼ÏëµÄÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø