题目内容

4.如图,矩形ABCD的边长AB=8,AD=4,若将△DCB沿BD所在直线翻折,点C落在点F处,DF与AB交于点E.则cos∠ADE=$\frac{4}{5}$.

分析 根据翻折的性质可得∠1=∠2,再根据两直线平行,内错角相等可得∠1=∠3,然后求出∠2=∠3,再根据等角对等边可得BF=DF,再表示出AF,然后在Rt△ABF中,利用勾股定理列出方程求出DF,根据余弦三角函数的定义即可求得答案.

解答 解:如图,由翻折的性质得,∠1=∠2,∠F=∠C=90°,FB=BC=4,
∵矩形ABCD的边AB∥DC,
∴∠1=∠3,
∴∠2=∠3,
∴BE=DE,
∵AB=8,
∴AE=8-BE,
在Rt△ABE中,AD2+AE2=DE2
∴42+(8-BE)2=BE2
解得BE=5,
∴cos∠ADE=$\frac{FB}{BE}$=$\frac{4}{5}$.

点评 本题考查了翻折变换的性质,平行线的性质,矩形的性质,三角函数的定义,勾股定理的应用,熟练掌握翻折前后的两个图形能够完全重合是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网