题目内容

11.如图,将一副三角尺的直角顶点叠放在点C处,∠D=30°,∠B=45°,求:
(1)若∠DCE=35°,求∠ACB的度数.
(2)若∠ACB=120°,求∠DCE的度数.
(3)猜想∠ACB和∠DCE的关系,并说明理由.

分析 (1))由∠ACD=∠BCE=90°,根据图形可知∠ACB=180°-∠DCE;
(2)由∠ACD=∠BCE=90°,根据图形可知∠DCE=180°-∠ACB;
(3)由∠ACD=∠BCE=90°,得出∠ACE+∠DCE+∠DCE+∠BCD=180°,即可证出∠ACB+∠DCE=180°.

解答 解:(1)∵∠ECB=90°,∠DCE=35°
∴∠DCB=90°-35°=55°
∵∠ACD=90°
∴∠ACB=∠ACD+∠DCB=145°.

(2)∵∠ACB=120°,∠ACD=90°
∴∠DCB=120°-90°=30°
∵∠ECB=90°
∴∠DCE=90°-30°=60°.

(3)猜想得∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)
理由:∵∠ECB=90°,∠ACD=90°
∴∠ACB=∠ACD+∠DCB=90°+∠DCB
∠DCE=∠ECB-∠DCB=90°-∠DCB
∴∠ACB+∠DCE=180°.

点评 本题考查了余角和补角的定义;弄清两个角之间的互余和互补关系是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网