题目内容

已知AB=AC,AE平分∠DAC,那么AE∥BC吗?为什么?
考点:等腰三角形的性质,平行线的判定
专题:
分析:根据等边对等角可得∠B=∠C,再利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAC=2∠B,根据角平分线的定义可得∠DAC=2∠DAE,然后求出∠B=∠DAE,最后根据同位角相等,两直线平行证明即可.
解答:解:AE∥BC.
∵AB=AC,
∴∠B=∠C,
由三角形的外角性质得,∠DAC=∠B+∠C=2∠B,
∵AE平分∠DAC,
∴∠DAC=2∠DAE,
∴∠B=∠DAE,
∴AE∥BC.
点评:本题考查了等腰三角形的性质,平行线的判定,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网