题目内容
16.解一元二次不等式:x2-5x>0
解:设x2-5x=0,解得x1=0,x2=5,则抛物线y=x2-5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2-5x的大致图象(如图所示),由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即x2-5x>0,所以,一元二次不等式x2-5x>0的解集为:x<0,或x>5.
通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:
(1)一元二次不等式x2-5x<0的解集为0<x<5.
(2)用类似的方法解一元二次不等式:x2-2x-3>0.
分析 (1)观察图象即可写出一元二次不等式:x2-5x<0的解集;
(2)先设函数解析式,根据a的值确定抛物线的开口向上,再找出抛物线与x轴相交的两点,就可以画出抛物线,根据y>0确定一元二次不等式x2-2x-3>0的解集.
解答 解:(1)由例题的图形可得:一元二次不等式x2-5x<0的解集为:0<x<5;![]()
故答案为:0<x<5;
(2)设y=x2-2x-3,则y是x的二次函数.
∵a=1>0,
∴抛物线开口向上.
又∵当y=0时,x2-2x-3=0,
解得:x1=-1,x2=3.
∴由此得抛物线y=x2-2x-3的大致图象如图所示.
观察函数图象可知:当x<-1或x>3时,y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
点评 本题主要考查了二次函数与不等式以及在直角坐标系中利用二次函数图象解不等式,利用作图结合交点直观求解集是解题关键.
练习册系列答案
相关题目
4.$\frac{2}{3}$sin60°的值等于( )
| A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{3}}{6}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{4}{3}$$\sqrt{3}$ |
8.在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:

请你根据以上提供的信息解答下列问题:
(1)此次竞赛中二班成绩在70分及其以上的人数有21人;
(2)补全下表中空缺的三个统计量:
(3)请根据上述图表对这次竞赛成绩进行分析,写出两个结论.
请你根据以上提供的信息解答下列问题:
(1)此次竞赛中二班成绩在70分及其以上的人数有21人;
(2)补全下表中空缺的三个统计量:
| 平均数(分) | 中位数(分) | 众数(分) | |
| 一班 | 77.6 | 80 | 80 |
| 二班 | 77.6 | 70 | 90 |