题目内容

2.直线y=-$\frac{3}{4}$x+3与x轴、y轴分别交于A、B两点,已知点C(0,-1)、D(0,k),以点D为圆心、DC为半径作⊙D,当⊙D与直线AB相切时,k的值为$\frac{7}{9}$.

分析 根据题意可将A,B代入解析式中求出两点坐标;当圆与直线相切时,根据直线1与x轴的角度可求出圆心坐标,即可得出k的值.

解答 解:如图所示:
在y=-$\frac{3}{4}$x+3 中,令x=0,得y=3;令y=0,
得x=4,
故A,B两点的坐标分别为A(4,0),B(0,3).
若动圆的圆心在E处时与直线l相切,设切点为E,
如图所示,连接ED,则ED⊥AB.
可知$\left\{\begin{array}{l}{A{D}^{2}-D{E}^{2}=A{E}^{2}}\\{AE=AB-BE}\\{B{E}^{2}=B{D}^{2}-D{E}^{2}}\end{array}\right.$
代入数据得
k=$\frac{7}{9}$
故答案为:$\frac{7}{9}$.

点评 本题主要考查切线的性质,一次函数的应用,勾股定理,正确的作出图形是解题的关键.

练习册系列答案
相关题目
17.定义:在平面内,我们把既有大小又有方向的量叫做平面向量.平面向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.
如以正方形ABCD的四个顶点中某一点为起点,另一个顶点为终点作向量,可以作出8个不同的向量:$\overrightarrow{AB}$、$\overrightarrow{BA}$、$\overrightarrow{AC}$、$\overrightarrow{CA}$、$\overrightarrow{AD}$、$\overrightarrow{DA}$、$\overrightarrow{BD}$、$\overrightarrow{DB}$(由于$\overrightarrow{AB}$和$\overrightarrow{DC}$是相等向量,因此只算一个).

(1)作两个相邻的正方形(如图一).以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(2),试求f(2)的值;
(2)作n个相邻的正方形(如图二)“一字型”排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(n),试求f(n)的值;
(3)作2×3个相邻的正方形(如图三)排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(2×3),试求f(2×3)的值;
(4)作m×n个相邻的正方形(如图四)排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(m×n),试求f(m×n)的值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网