题目内容
已知:如图,点A,B,C,D在一条直线上,AB=CD,AE∥FD,且∠E=∠F.求证:EC=FB.
如图,正方形ABCD的对角线相交于点O,BC=6,延长BC至点E,使得CE=8,点F是DE的中点,连接CF、OF.
(1)求OF的长.
(2)求CF的长.
2016的相反数是:
A. 2016 B. -2016 C. D. -
如图,已知MN是△ABC的边AB的垂直平分线,垂足为点F,∠CAB的平分线AD交BC于点D,且MN与AD交于点O,连接BO并延长交AC于点E,则下列结论中不一定成立的是( )
A. ∠CAD=∠BAD B. OE=OF C. AF=BF D. OA=OB
若△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC一定是( )
A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D. 等腰三角形
如图,已知△DAC,△EBC均是等边三角形,点A,C,B在同一条直线上,AE,BD分别与CD,CE交于点M,N,下列结论:①△ACE≌△DCB; ②CM=CN;③AC=DN ;④∠DAE=∠DBC.其中正确的结论有________________.
如图所示,∠A+∠B+∠C+∠D+∠E的结果为( )
A. 90° B. 360° C. 180° D. 无法确定
(1)计算:(2017-π)0-()-1+|-2|;
(2)化简:(1-)÷().
已知:如图,△ABC和△DBE均为等腰直角三角形.
(1)求证:AD=CE;
(2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由.