题目内容

如图,菱形ABCD中,∠BAD=120°,CF⊥AD于点E,且BC=CF,连接BF交对角线AC于点M,则∠FMC=
 
度.
考点:菱形的性质
专题:
分析:利用菱形的性质得出∠BCA=60°,∠ACE=∠DCE=30°,∠CBD=∠ABD=30°,AC⊥BD,再利用等腰三角形的性质以及三角形外角的性质得出答案.
解答:解:∵菱形ABCD中,∠BAD=120°,CF⊥AD于点E,
∴∠BCA=60°,∠ACE=∠DCE=30°,∠CBD=∠ABD=30°,AC⊥BD,
∴∠BCF=90°,
∵BC=CF,
∴∠CBF=∠BFC=45°,
∴∠FBD=45°-30°=15°,
∴∠FMC=90°+15°=105°.
故答案为:105.
点评:此题主要考查了菱形的性质以及等腰三角形的性质等知识,得出∠CBF=∠BFC=45°是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网