题目内容

5.化简:$\frac{n}{m}\sqrt{\frac{n}{2{m}^{3}}}$•(-$\frac{1}{m}\sqrt{\frac{{n}^{3}}{{m}^{3}}}$) $÷\sqrt{\frac{n}{2{m}^{3}}}$(m>0,n>0)

分析 根据二次根式的乘除法,即可解答,注意结果化到最简.

解答 解:原式=$\frac{n}{{m}^{2}}\sqrt{\frac{n}{2m}}•(-\frac{n}{{m}^{2}}\sqrt{\frac{n}{m}})•m\sqrt{\frac{2m}{n}}$
=-$\frac{{n}^{2}}{{m}^{3}}\sqrt{\frac{n}{m}}$
=-$\frac{{n}^{2}}{{m}^{4}}\sqrt{mn}$.

点评 本题考查了二次根式的乘除法,解决本题的关键是在计算过程中注意化简.

练习册系列答案
相关题目
17.在研究一次函数的图象和性质时,小陈利用直线正比例函数y=x的图象,通过平移得到了一次函数y=x-1的图象,通过观察,小陈说只需将直线y=x向下平移一个单位,即可得到直线y=x-1;小云说,你的平移方式也可以看成将直线y=x向右平移1个单位;小捷说:你们俩说的都对,对于直线y=ax+b上任意一点A(x0,y0),向右平移m个单位,再向上平移n个单位,其解析式应该变成y=a(x-m)+b+n,例如:直线y=2x+3向右平移2个单位,再向上平移1个单位,则解析式变为y=2x.
参考上述方法,解决下列问题:
问题1:将直线y=$\frac{1}{2}$x-1向右平移2个单位,则其解析式为y=$\frac{1}{2}$x-2;
问题2:将直线y=$\frac{1}{3}$x+2向下平移1个单位,再向左平移3个单位,其解析式为y=$\frac{1}{3}$x+2;
问题3:将直线y=ax+a+1通过向下平移a+2个单位可以得到直线y=ax-1
知识应用:利用上述方法,我们也可以解决反比例函数的平移问题;
问题4:反比例函数y=$\frac{6}{x}$向右平移1个单位,其解析式为y=$\frac{6}{x-1}$;
问题5:反比例函数y1=$\frac{4}{x}$与正比例函数y2=x的交点M的坐标为(2,2)、(-2,-2);利用图象解不等式$\frac{4}{x}$>x,其解集为x<-2或0<x<2;
问题6:利用上述知识解不等式$\frac{4}{x-2}$+1>x-1,其解集为x<0或2<x<4;
问题7:已知不等式$\frac{8}{x-a}$+b>2x的解集为x<-1或1<x<3,则a=1;b=2.
问题8:已知函数y=$\frac{2}{2x-1}$+3,其图象上任意一点(x0,y0),判断点(x0+1,y0-3)在下列哪个函数图象上C
A.y=$\frac{2}{2x-1}$; B.y=$\frac{2}{2x-1}$+3; C.y=$\frac{2}{2x-3}$; D.y=$\frac{2}{2x+1}$.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网