题目内容
某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.
问题思考:
如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF.
(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值.
(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.
问题拓展:
(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.
(4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.

问题思考:
如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF.
(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值.
(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.
问题拓展:
(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.
(4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.
考点:四边形综合题
专题:几何综合题,压轴题
分析:(1)设AP=x,则PB=1-x,根据正方形的面积公式得到这两个正方形面积之和=x2+(8-x)2,配方得到2(x-4)2+32,然后根据二次函数的最值问题求解.
(2)根据PE∥BF求得PK=
,进而求得DK=PD-PK=a-
=
,然后根据面积公式即可求得.
(3)本问涉及点的运动轨迹.PQ的中点O所经过的路径是三段半径为4,圆心角为90°的圆弧,如答图3所示;
(4)本问涉及点的运动轨迹.GH中点O的运动路径是与AB平行且距离为3的线段XY上,如答图4-1所示;然后利用轴对称的性质,求出OM+OB的最小值,如答图4-2所示.
(2)根据PE∥BF求得PK=
| a(8-a) |
| 8 |
| a(8-a) |
| 8 |
| a2 |
| 8 |
(3)本问涉及点的运动轨迹.PQ的中点O所经过的路径是三段半径为4,圆心角为90°的圆弧,如答图3所示;
(4)本问涉及点的运动轨迹.GH中点O的运动路径是与AB平行且距离为3的线段XY上,如答图4-1所示;然后利用轴对称的性质,求出OM+OB的最小值,如答图4-2所示.
解答:解:(1)当点P运动时,这两个正方形的面积之和不是定值.
设AP=x,则PB=8-x,
根据题意得这两个正方形面积之和=x2+(8-x)2
=2x2-16x+64
=2(x-4)2+32,
所以当x=4时,这两个正方形面积之和有最小值,最小值为32.
(2)存在两个面积始终相等的三角形,它们是△APK与△DFK.
依题意画出图形,如答图2所示.

设AP=a,则PB=BF=8-a.
∵PE∥BF,
∴
=
,即
=
,
∴PK=
,
∴DK=PD-PK=a-
=
,
∴S△APK=
PK•PA=
•
•a=
,S△DFK=
DK•EF=
•
•(8-a)=
,
∴S△APK=S△DFK.
(3)当点P从点A出发,沿A→B→C→D的线路,向点D运动时,不妨设点Q在DA边上,
若点P在点A,点Q在点D,此时PQ的中点O即为DA边的中点;
若点Q在DA边上,且不在点D,则点P在AB上,且不在点A.
此时在Rt△APQ中,O为PQ的中点,所以AO=
PQ=4.
所以点O在以A为圆心,半径为4,圆心角为90°的圆弧上.
PQ的中点O所经过的路径是三段半径为4,圆心角为90°的圆弧,如答图3所示:

所以PQ的中点O所经过的路径的长为:
×2π×4=6π.
(4)点O所经过的路径长为3,OM+OB的最小值为
.
如答图4-1,分别过点G、O、H作AB的垂线,垂足分别为点R、S、T,则四边形GRTH为梯形.

∵点O为中点,
∴OS=
(GR+HT)=
(AP+PB)=4,即OS为定值.
∴点O的运动路径在与AB距离为4的平行线上.
∵MN=6,点P在线段MN上运动,且点O为GH中点,
∴点O的运动路径为线段XY,XY=
MN=3,XY∥AB且平行线之间距离为4,点X与点A、点Y与点B之间的水平距离均为2.5.
如答图4-2,作点M关于直线XY的对称点M′,连接BM′,与XY交于点O.

由轴对称性质可知,此时OM+OB=BM′最小.
在Rt△BMM′中,MM′=2×4=8,BM=7,由勾股定理得:BM′=
=
.
∴OM+OB的最小值为
.
设AP=x,则PB=8-x,
根据题意得这两个正方形面积之和=x2+(8-x)2
=2x2-16x+64
=2(x-4)2+32,
所以当x=4时,这两个正方形面积之和有最小值,最小值为32.
(2)存在两个面积始终相等的三角形,它们是△APK与△DFK.
依题意画出图形,如答图2所示.
设AP=a,则PB=BF=8-a.
∵PE∥BF,
∴
| PK |
| BF |
| AP |
| AB |
| PK |
| 8-a |
| a |
| 8 |
∴PK=
| a(8-a) |
| 8 |
∴DK=PD-PK=a-
| a(8-a) |
| 8 |
| a2 |
| 8 |
∴S△APK=
| 1 |
| 2 |
| 1 |
| 2 |
| a(8-a) |
| 8 |
| a2(8-a) |
| 16 |
| 1 |
| 2 |
| 1 |
| 2 |
| a2 |
| 8 |
| a2(8-a) |
| 16 |
∴S△APK=S△DFK.
(3)当点P从点A出发,沿A→B→C→D的线路,向点D运动时,不妨设点Q在DA边上,
若点P在点A,点Q在点D,此时PQ的中点O即为DA边的中点;
若点Q在DA边上,且不在点D,则点P在AB上,且不在点A.
此时在Rt△APQ中,O为PQ的中点,所以AO=
| 1 |
| 2 |
所以点O在以A为圆心,半径为4,圆心角为90°的圆弧上.
PQ的中点O所经过的路径是三段半径为4,圆心角为90°的圆弧,如答图3所示:
所以PQ的中点O所经过的路径的长为:
| 3 |
| 4 |
(4)点O所经过的路径长为3,OM+OB的最小值为
| 113 |
如答图4-1,分别过点G、O、H作AB的垂线,垂足分别为点R、S、T,则四边形GRTH为梯形.
∵点O为中点,
∴OS=
| 1 |
| 2 |
| 1 |
| 2 |
∴点O的运动路径在与AB距离为4的平行线上.
∵MN=6,点P在线段MN上运动,且点O为GH中点,
∴点O的运动路径为线段XY,XY=
| 1 |
| 2 |
如答图4-2,作点M关于直线XY的对称点M′,连接BM′,与XY交于点O.
由轴对称性质可知,此时OM+OB=BM′最小.
在Rt△BMM′中,MM′=2×4=8,BM=7,由勾股定理得:BM′=
| MM′2+BM2 |
| 113 |
∴OM+OB的最小值为
| 113 |
点评:本题是中考压轴题,难度较大.解题难点在于分析动点的运动轨迹,需要很好的空间想象能力和作图分析能力;此外本题还综合考查了二次函数、整式运算、四边形、中位线、相似、轴对称与勾股定理等众多知识点,是一道好题.
练习册系列答案
相关题目
计算(5m2+15m3n-20m4)÷(-5m2)结果正确的是( )
| A、1-3mn+4m2 |
| B、-1-3m+4m2 |
| C、4m2-3mn-1 |
| D、4m2-3mn |