题目内容
9.有10个形状、大小、质地完全相同的小球,把其中两个标号写上“1”号,其余写上“2,3,…,9”,随机地取出一个小球后,不放回,再随机取出一个小球,求第二次取出小球的标号大于第一次取出小球的标号的概率.分析 列表得出所有等可能的情况数,找出第二次取出小球的标号大于第一次取出小球的标号的情况数,即可求出所求的概率.
解答 解:列表得:
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
| 1 | --- | (1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) | (7,1) | (8,1) | (9,1) |
| 1 | (1,1) | --- | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) | (7,1) | (8,1) | (9,1) |
| 2 | (1,2) | (1,2) | --- | (3,2) | (4,2) | (5,2) | (6,2) | (7,2) | (8,2) | (9,2) |
| 3 | (1,3) | (1,3) | (2,3) | --- | (4,3) | (5,3) | (6,3) | (7,3) | (8,3) | (9,3) |
| 4 | (1,4) | (1,4) | (2,4) | (3,4) | --- | (5,4) | (6,4) | (7,4) | (8,4) | (9,4) |
| 5 | (1,5) | (1,5) | (2,5) | (3,5) | (4,5) | --- | (6,5) | (7,5) | (8,5) | (9,5) |
| 6 | (1,6) | (1,6) | (2,6) | (3,6) | (4,6) | (5,6) | --- | (7,6) | (8,6) | (9,6) |
| 7 | (1,7) | (1,7) | (2,7) | (3,7) | (4,7) | (5,7) | (6,7) | --- | (8,7) | (9,7) |
| 8 | (1,8) | (1,8) | (2,8) | (3,8) | (4,8) | (5,8) | (6,8) | (7,8) | --- | (9,8) |
| 9 | (1,9) | (1,9) | (2,9) | (3,9) | (4,9) | (5,9) | (6,9) | (7,9) | (8,9) | --- |
则P(第二次取出小球的标号大于第一次取出小球的标号)=$\frac{44}{90}$=$\frac{22}{45}$.
点评 此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关题目
20.
如图,能判断a∥c的条件是( )
| A. | a∥b,b∥c | B. | ∠1+∠3=180° | C. | ∠1+∠4=180° | D. | ∠4+∠5=180° |