题目内容

3.如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,点P不与O,D重合,连接PA.设∠PAB=β,则β的取值范围是60°<β<75°.

分析 当P点与D点重合是∠DAB=75°,与O重合则OAB=60°,∠OAB<∠PAB<∠DAB,即可得出结果.

解答 解:连接DA,OA,则△OAB是等边三角形,
∴∠OAB=∠AOB=60°,
∵DC是直径,DC⊥AB,
∴∠AOC=$\frac{1}{2}$∠AOB=30°,
∴∠ADC=15°,
∴∠DAB=75°,
∵∠OAB<∠PAB<∠DAB,
∴60°<β≤<5°;
故答案为:60°<β<75°.

点评 本题考查了垂径定理,等边三角形的判定及性质,圆周角定理;熟练掌握垂径定理和圆周角定理是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网