题目内容
18.解方程组:(1)$\left\{\begin{array}{l}{2x+3y=12}\\{4x-3y-6=0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x+y=6}\\{25%x+40%y=6×30%}\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用代入消元法求出解即可.
解答 解:(1)方程组整理得:$\left\{\begin{array}{l}{2x+3y=12①}\\{4x-3y=6②}\end{array}\right.$,
①+②,得6x=18,即x=3,
把x=3代入方程①,解得:y=2.
则原方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{x+y=6①}\\{5x+8y=36②}\end{array}\right.$
由①,得x=6-y,
将x=6-y代入方程②,解得y=2,
将y=2代入方程①,解得x=4,
则原方程组的解为$\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
8.下列计算错误的是( )
| A. | a2•a6=a8 | B. | (-5b)2=10b2 | C. | (x3)2=x6 | D. | m8÷m4=m4 |
6.下列不等式中,属于一元一次不等式的是( )
| A. | 2(1-y)+y<2y+3 | B. | x2-2x+1=0 | C. | a+b>c | D. | x+2y<y+4 |