题目内容

10.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.
(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);
(2)试判断DC与BE的位置关系,并说明理由.

分析 (1)根据等腰直角三角形的性质可以得出△ABE≌△ACD;
(2)由△ABE≌△ACD可以得出∠AEB=∠ADC,进而得出∠DCE=90°,就可以得出结论.

解答 解:(1)∵△ABC和△ADE是等腰直角三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=90°,
∴∠BAC+∠EAC=∠DAE+∠EAC,
∴∠BAE=∠CAD,
在△ABE和△ACD中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAC=∠CAD}\\{AE=AD}\end{array}\right.$,
∴△ABE≌△ACD(SAS);

(2)DC⊥BE,
∵△ABE≌△ACD,
∴∠AEB=∠ADC,
∵∠ADC+∠AFD=90°,
∴∠AEB+∠AFD=90°,
∵∠AFD=∠CFE,
∴∠AEB+∠CFE=90°,
∴∠FCE=90°,
∴DC⊥BE.

点评 本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,垂直的判定的运用,解答时证明三角形全等是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网