题目内容
14.若x满足(x-2015)(2002-x)=-302,试求(x-2015)2+(2002-x)2的值.设x-2015=a,2002-x=b,则ab=-302且a+b=(x-2015)+(2002-x)=-13.
∵(a+b)2=a2+2ab+b2
∴a2+b2=(a+b)2-2ab=(-13)2-2×(-302)=773,即(x-2015)2+(2002-x)2的值.
解决问题:
请你根据上述材料的解题思路,完成下面一题的解答过程,若y满足(y-2015)2+(y-2016)2=4035,试求(y-2015)(y-2016)的值.
分析 设y-2015=a,y-2016=b,则a2+b2=4035,a-b=1,根据(a-b)2=a2-2ab+b2,可以求出ab,即可解决问题.
解答 解:设y-2015=a,y-2016=b,则a2+b2=4035,a-b=1,
∵(a-b)2=a2-2ab+b2,
∴ab=$\frac{1}{2}$[a2+b2-(a-b)2]=2017.
∴(y-2015)(y-2016)=2017.
点评 本题考查整式的混合运算、乘法公式等知识,解题的关键是灵活运用公式,学会整体换元的思想,技巧性比较强,属于中考常考题型.
练习册系列答案
相关题目
19.下列运算正确的是( )
| A. | x3+x2=x5 | B. | x3-x3=x0 | C. | x3÷x2=x | D. | (x3)2=x5 |
4.某商店销售面向中考生的计数跳绳,每根成本为20元,销售的前40天内的日销售量m(根)与时间t(天)的关系如表.
前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=$\frac{1}{4}$t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=-$\frac{1}{2}$t+40(21≤t≤40且t为整数).
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)倾计算40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<3)给希望工程.公司通过销售记录发现,前20天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.
| 时间t(天) | 1 | 3 | 8 | 10 | 26 | … |
| 日销售量m(件) | 51 | 49 | 44 | 42 | 26 | … |
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)倾计算40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<3)给希望工程.公司通过销售记录发现,前20天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.