题目内容

2.如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、CD、AC、BD的中点
求证:四边形EGFH是菱形.

分析 由已知条件得出GF是△ADC的中位线,GE是△ABC的中位线,EH是△ABD的中位线,由三角形中位线定理得出GF∥EH,GF=EH,得出四边形EGFH是平行四边形,再证出GE=EH,即可得出结论.

解答 证明:∵点E、F、G、H分别是AB、CD、AC、BD的中点,
∴GF是△ADC的中位线,GE是△ABC的中位线,EH是△ABD的中位线,
∴GF∥AD,GF=$\frac{1}{2}$AD,GE=$\frac{1}{2}$BC,EH∥AD,EH=$\frac{1}{2}$AD,
∴GF∥EH,GF=EH,
∴四边形EGFH是平行四边形,
又∵AD=BC,
∴GE=EH,
∴四边形EGFH是菱形.

点评 本题考查了三角形中位线定理、平行四边形的判定、菱形的判定方法;熟练掌握菱形的判定方法,由三角形中位线定理得出线段之间的关系是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网