题目内容

19.如图,在平行四边形ABCD中,对角线AC上有E、F两点,要使四边形BEDF是平行四边形,还需要增加一个条件是AE=CF.(填上一个即可).

分析 连接BD交AC于点O,由平行四边形的性质可得到OB=OD,要证明四边形BEDF为平行四边形,只需要OE=OF即可,故添加的条件只要能证明OE=OF即可.

解答 解:
如图,连接BD交AC于点O,
∵四边形ABCD为平行四边形,
∴OB=OD,OA=OC,
若AE=CF,则有AO-AE=CO-CF,即OE=OF,
∴四边形BEDF为平行四边形,
故答案为:AE=CF.

点评 本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.即①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③一组对边平行且相等的四边形是平行四边形,④两组对角分别相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网