题目内容

如图,以(1,-4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax2+bx+c=0的正数解的范围是(  )
A、2<x<3
B、3<x<4
C、4<x<5
D、5<x<6
考点:图象法求一元二次方程的近似根
专题:
分析:先根据图象得出对称轴左侧图象与x轴交点横坐标的取值范围,再利用对称轴x=1,可以算出右侧交点横坐标的取值范围.
解答:解:∵二次函数y=ax2+bx+c的顶点为(1,-4),
∴对称轴为x=1,
而对称轴左侧图象与x轴交点横坐标的取值范围是-3<x<-2,
∴右侧交点横坐标的取值范围是4<x<5.
故选:C.
点评:此题主要考查了图象法求一元二次方程的近似根,解答本题首先需要观察得出对称轴左侧图象与x轴交点横坐标的取值范围,再根据对称性算出右侧交点横坐标的取值范围.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网