题目内容
2.分析 直接利用平行四边形的性质得出AE=DE=2,BF=1,AB=DC=8,AD=BC=4,再利用相似三角形的判定证明即可.
解答 证明:∵在平行四边形ABCD中,AB=8,AD=4,E是AD的中点,
∴AE=DE=2,BF=1,AB=DC=8,AD=BC=4,
∵$\frac{DE}{DC}=\frac{2}{8}=\frac{BF}{BC}=\frac{1}{4}$,∠D=∠B
∴△CBF∽△CDE.
点评 此题主要考查了平行四边形的性质以及相似三角形的判定,熟练应用相似三角形的判定是解题关键.
练习册系列答案
相关题目