题目内容
| EF |
| EF |
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:弧长的计算,菱形的性质
专题:
分析:首先算出扇形OEF的圆心角,然后根据弧长的公式计算即可.
解答:
解:如图,连接OB.
由题意可知OA=OB=OC=OF=2cm,
∴△AOB,△BOC是等边三角形,
∴∠AOC=120°,
∵∠1=∠2,
∴∠EOF=120°,
故
的长为
=
π(cm).
故选:C.
由题意可知OA=OB=OC=OF=2cm,
∴△AOB,△BOC是等边三角形,
∴∠AOC=120°,
∵∠1=∠2,
∴∠EOF=120°,
故
| EF |
| 120π×2 |
| 180 |
| 4 |
| 3 |
故选:C.
点评:此题主要考查了弧长的计算,解此题的关键是能利用菱形的性质求出扇形的半径和圆心角,从而求出弧长.
练习册系列答案
相关题目
| A、3:1 | B、1:3 |
| C、3:4 | D、2:3 |
| A、12.5° | B、30° |
| C、40° | D、50° |