题目内容

如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求证:△ABC≌△DEF;
(2)试判断:四边形AECD的形状,并证明你的结论.

 

 

证明:(1)∵AB∥DE,
∴∠B=∠DEF,
∵BE=EC=CF,
∴BC=EF,
在△ABC和△DEF中
∠B=∠DEF, BC=EF, ∠ACB=∠F,
∴△ABC≌△DEF.
(2)四边形AECD的形状是平行四边形,
证明:∵△ABC≌△DEF,
∴AC=DF,
∵∠ACB=∠F,
∴AC∥DF,
∴四边形ACFD是平行四边形,
∴AD∥CF,AD=CF,
∵EC=CF,
∴AD∥EC,AD=CE,
∴四边形AECD是平行四边形.

 

【解析】

(1)根据平行线得出∠B=∠DEF,求出BC=EF,根据ASA推出两三角形全等即可;
(2)根据全等得出AC=DF,推出AC∥DF,得出平行四边形ACFD,推出AD∥CF,MAD=CF,推出AD=CE,AD∥CE,根据平行四边形的判定推出即可.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网