题目内容
19.分析 结合菱形、平行四边形的性质来进行分析.如图,过点D作DH⊥x轴于点H,求出点D的坐标,进而判断平行四边形ODAE是否为菱形.
解答 解:如图,过点D作DH⊥x轴于点H.
∵S?ODAE=6,OA=4,![]()
∴S△AOD=$\frac{1}{2}$OA•DH=3,
∴DH=$\frac{3}{2}$.
因为D在第三象限,所以D的纵坐标为负,且D在抛物线上,
∴$\frac{3}{4}$x2+$\frac{15}{4}$x+3=-$\frac{3}{2}$,
解得:x1=-2,x2=-3.
∴点D坐标为(-2,-$\frac{3}{2}$)或(-3,-$\frac{3}{2}$).
当点D为(-2,-$\frac{3}{2}$)时,DH垂直平分OA,平行四边形ODAE为菱形;
当点D为(-3,-$\frac{3}{2}$)时,OD≠AD,平行四边形ODAE不为菱形.
点评 本题综合考查了二次函数、平行四边形、菱形等知识点.涉及存在型问题,有一定的难度.在解题过程中,注意数形结合思想、分类讨论思想及方程思想等的应用.
练习册系列答案
相关题目
9.
在2015年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数分别是( )
| A. | 3,2.5 | B. | 47,46 | C. | 47,47 | D. | 50,47 |