题目内容

如图,△ABC为⊙O的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD交AD于E,交AB于F,交⊙O于G.
(1)判断直线PA与⊙O的位置关系,并说明理由;
(2)求证:AG2=AF•AB;
(3)若⊙O的直径为10,AC=2
5
,AB=4
5
,求△AFG的面积.
考点:圆的综合题
专题:几何综合题
分析:(1)首先连接CD,由AD为⊙O的直径,可得∠ACD=90°,然后由圆周角定理,证得∠B=∠D,由已知∠PAC=∠B,可证得DA⊥PA,继而可证得PA与⊙O相切.
(2)首先连接BG,易证得△AFG∽△AGB,然后由相似三角形的对应边成比例,证得结论;
(3)首先连接BD,由AG2=AF•AB,可求得AF的长,易证得△AEF∽△ABD,即可求得AE的长,继而可求得EF与EG的长,则可求得答案.
解答:(1)PA与⊙O相切.理由:
连接CD,
∵AD为⊙O的直径,
∴∠ACD=90°,
∴∠D+∠CAD=90°,
∵∠B=∠D,∠PAC=∠B,
∴∠PAC=∠D,
∴∠PAC+∠CAD=90°,
即DA⊥PA,
∵点A在圆上,
∴PA与⊙O相切.

(2)证明:如图2,连接BG,
∵AD为⊙O的直径,CG⊥AD,
AC
=
AG

∴∠AGF=∠ABG,
∵∠GAF=∠BAG,
∴△AGF∽△ABG,
∴AG:AB=AF:AG,
∴AG2=AF•AB;

(3)解:如图3,连接BD,
∵AD是直径,
∴∠ABD=90°,
∵AG2=AF•AB,AG=AC=2
5
,AB=4
5

∴AF=
AG2
AB
=
5

∵CG⊥AD,
∴∠AEF=∠ABD=90°,
∵∠EAF=∠BAD,
∴△AEF∽△ABD,
AE
AB
=
AF
AD

AE
4
5
=
5
10

解得:AE=2,
∴EF=
AF2-AE2
=1,
∵EG=
AG2-AE2
=4,
∴FG=EG-EF=4-1=3,
∴S△AFG=
1
2
FG•AE=
1
2
×3×2=3.
点评:此题考查了圆的切线的判定、圆周角定理、垂径定理以及相似三角形的判定与性质.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网