题目内容

16.如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于点O,OC=1,以点O为圆心OC为半径作半圆.
(1)求证:AB为⊙O的切线;
(2)如果tan∠CAO=$\frac{1}{3}$,求cosB的值.

分析 (1)如图作OM⊥AB于M,根据角平分线性质定理,可以证明OM=OC,由此即可证明.
(2)设BM=x,OB=y,列方程组即可解决问题.

解答 解:(1)如图作OM⊥AB于M,
∵OA平分∠CAB,OC⊥AC,OM⊥AB,
∴OC=OM,
∴AB是⊙O的切线,
(2)设BM=x,OB=y,则y2-x2=1    ①,
∵cosB=$\frac{BM}{OB}$=$\frac{BC}{AB}$,
∴$\frac{x}{y}$=$\frac{y+1}{x+3}$,
∴x2+3x=y2+y    ②,
由①②可以得到:y=3x-1,
∴(3x-1)2-x2=1,
∴x=$\frac{3}{4}$,y=$\frac{5}{4}$,
∴cosB=$\frac{x}{y}$=$\frac{3}{5}$.

点评 本题考查切线的判定、勾股定理、三角函数等知识,解题的关键是记住圆心到直线的距离等于半径,这条直线就是圆的切线,学会设未知数列方程组解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网