题目内容

1.如图是二次函数y=ax2+bx+c图象的一部分,且过点A (3,0),二次函数图象的对称轴是x=1.下列结论:①b2>4ac;②ac>0; ③a-b+c>0; ④4a+2b+c<0.其中错误的结论有(  )
A.1个B.2个C.3个D.4个

分析 由对称性可求得抛物线与x轴的另一交点坐标为(-1,0),容易判断①②③,再由x=2时y>0可判断④,可得出答案.

解答 解:
∵二次函数y=ax2+bx+c过点A (3,0),对称轴是x=1,
∴抛物线与x轴的另一交点坐标为(-1,0),
∴当x=-1时,y=0,即a-b+c=0,故③错误;
∵开口向下,与y轴的交点在x轴的上方,
∴a<0,c>0,
∴ac<0,故②错误;
∵抛物线与x轴有两个交点,
∴方程ax2+bx+c=0有两个不相等的实数根,
∴b2-4ac>0,即b2>4ac,故①正确;
∵当x=2时,y>0,
∴4a+2b+c>0,故④错误;
综上可知错误的共有3个,
故选C.

点评 本题主要考查二次函数图象与系数的关系,掌握a、b、c与二次函数的图象的关系是解题的关键,注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网