题目内容

10.如图,四边形ABCD内接于圆,对角线AC、BD交于点G,I1、I2、I3分别为△ADC、△BDC、△ABG的内心.证明:I3G⊥I1I2

分析 分别连接AI3,AI1,DI1,DI2,CI1,CI2,延长I3G交I1I2于点H,根据I1、I2、I3分别为△ADC、△BDC、△ABG的内心得到∠AI3G=90°+$\frac{1}{2}$∠ABD,∠AI1C=90°+$\frac{1}{2}$∠ADC,从而得到点D、I1、I2、C四点共圆,利用∠I3HI1=360°-(∠1+∠2+∠AI3G+∠AI1H)=90°,得到I3G⊥I1I2

解答 证明:分别连接AI3,AI1,DI1,DI2,CI1,CI2
延长I3G交I1I2于点H,
∵I1、I2、I3分别为△ADC、△BDC、△ABG的内心,
∴∠AI3G=90°+$\frac{1}{2}$∠ABD,∠AI1C=90°+$\frac{1}{2}$∠ADC,
∴∠DI1C=90°+$\frac{1}{2}$∠DAC,∴∠DI2C=90°+$\frac{1}{2}$∠DBC,
∠1+∠2=$\frac{1}{2}$(∠DAC+∠BAC),
又∵∠DAC=∠DBC,
∴∠DI1C=∠DI2C,
∴点D、I1、I2、C四点共圆,
∴∠I2I1C=∠I2DC=$\frac{1}{2}$∠BDC=$\frac{1}{2}$∠BAC,
∴∠I3HI1=360°-(∠1+∠2+∠AI3G+∠AI1H)
∵∠1+∠2+∠AI3G+∠AI1H=$\frac{1}{2}$(∠DAC+∠BAC)+90°+$\frac{1}{2}$∠ABD+90°+$\frac{1}{2}$∠ADC-I2I1C
=180°+$\frac{1}{2}$(∠DAC+∠BAC+∠ABD+∠ADC+∠BAC)
=180°+$\frac{1}{2}$(∠ABD+∠DBC+∠ADC)
=270°,
∴∠I3HI1=360°-270°=90°,
∴I3G⊥I1I2

点评 本题考查了三角形的五心的知识,解题的关键是正确的构造辅助线,利用院内接四边形的性质求解,属于难题,了解三角形的五心的性质是解决本题的重中之重.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网