题目内容
19.(1)请你判断OM和ON的数量关系,并说明理由;
(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.
分析 (1)根据四边形ABCD是菱形,判断出AD∥BC,AO=OC,即可推得OM=ON.
(2)首先根据四边形ABCD是菱形,判断出AC⊥BD,AD=BC=AB=6,进而求出BO、BD的值是多少;然后根据DE∥AC,AD∥CE,判断出四边形ACED是平行四边形,求出DE=AC=6,即可求出△BDE的周长是多少.
解答 解:(1)∵四边形ABCD是菱形,
∴AD∥BC,AO=OC,
∴$\frac{OM}{ON}=\frac{AO}{OC}=1$,
∴OM=ON.
(2)∵四边形ABCD是菱形,
∴AC⊥BD,AD=BC=AB=6,
∴BO=$\sqrt{{AB}^{2}{-AO}^{2}}=\sqrt{{6}^{2}{-(8÷2)}^{2}}$=2$\sqrt{5}$,
∴$BD=2BO=2×2\sqrt{5}=4\sqrt{5}$,
∵DE∥AC,AD∥CE,
∴四边形ACED是平行四边形,
∴DE=AC=8,
∴△BDE的周长是:
BD+DE+BE
=BD+AC+(BC+CE)
=4$\sqrt{5}$+8+(6+6)
=20$+4\sqrt{5}$
即△BDE的周长是20$+4\sqrt{5}$.
点评 (1)此题主要考查了菱形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.
(2)此题还考查了三角形的周长的含义以及求法,以及勾股定理的应用,要熟练掌握.
练习册系列答案
相关题目
14.
第17届亚洲运动会于2014年9月19日-10月4日在韩国仁川举行,中国射击队对这次仁川亚运会非常重视,在一次选拔赛中,运动员甲10次射击成绩的统计表和扇形统计图如下:
(1)求甲运动员几种7环和10环的次数,并补全扇形统计图;
(2)求甲运动员的10次设计的平均成绩是多少环;
(3)已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果在这二人中选一人参加比赛,你认为应该派谁去?并说明理由.
| 命中环数 | 10 | 9 | 8 | 7 |
| 命中次数 | 4 | 3 | 2 | ,1 |
(2)求甲运动员的10次设计的平均成绩是多少环;
(3)已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果在这二人中选一人参加比赛,你认为应该派谁去?并说明理由.
4.
如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是( )
| A. | AD=BD | B. | OD=CD | C. | ∠CAD=∠CBD | D. | ∠OCA=∠OCB |