题目内容

1.解下列方程
(1)$\left\{\begin{array}{l}{x-y=4}\\{2x+y=5}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x-y=-4}\\{4x-5y=-23}\end{array}\right.$
(3)$\left\{\begin{array}{l}{3(x-1)=2y-2}\\{5(y-1)=2(x+10)}\end{array}\right.$
(4)$\left\{\begin{array}{l}{13x+14y=41}\\{14x+13y=40}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可;
(3)方程组整理后,利用加减消元法求出解即可;
(4)方程组两方程相加得到x+y=3,与第一个方程联立,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x-y=4①}\\{2x+y=5②}\end{array}\right.$,
①+②得:3x=9,即x=3,
把x=3代入①得:y=-1,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x-y=-4①}\\{4x-5y=-23②}\end{array}\right.$,
①×2-②得:3y=15,即y=5,
把y=5代入①得:x=$\frac{1}{2}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=5}\end{array}\right.$;
(3)方程组整理得:$\left\{\begin{array}{l}{3x-2y=1①}\\{2x-5y=-25②}\end{array}\right.$,
①×5-②×2得:11x=55,即x=5,
把x=5代入①得:y=7,
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=7}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{13x+14y=41①}\\{14x+13y=40②}\end{array}\right.$,
①+②得:27(x+y)=81,即x+y=3③,
③×14-①得:x=1,
把x=1代入③得:y=2,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网