题目内容

5.计算:$\sqrt{(1-\sqrt{3})^{2}}$-$\sqrt{7{5}^{2}-2{1}^{2}}$.

分析 分析:先化简:$\sqrt{(1-\sqrt{3})^{2}}=|1-\sqrt{3}|=\sqrt{3}-1$,由752-212=(75+21)(75-21)=96×54=16×6×6×9=16×9×36,所以$\sqrt{7{5}^{2}-2{1}^{2}}=\sqrt{16×9×36}$=4×3×6,然后合并同类项求得结果.

解答 解:$\sqrt{(1-\sqrt{3})^{2}}$-$\sqrt{7{5}^{2}-2{1}^{2}}$,
=$\sqrt{3}-1$-$\sqrt{(75+21)(75-21)}$,
=$\sqrt{3}-1$-$\sqrt{96×54}$,
=$\sqrt{3}-1$-$\sqrt{16×9×36}$,
=$\sqrt{3}-1$-4×3×6,
=$\sqrt{3}$-73

点评 本题考查的是二次根式的化简求值,正确化简是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网