ÌâÄ¿ÄÚÈÝ
11£®ÒÑÖª£ºÈçͼ1£¬ÔÚÆ½ÃæÖ±½Ç×ø±êÖУ¬A£¨12£¬0£©£¬B£¨6£¬6£©£¬µãCΪÏß¶ÎABµÄÖе㣬µãDÓëÔµãO¹ØÓÚµãC¶Ô³Æ£®£¨1£©ÀûÓÃÖ±³ßºÍÔ²¹æÔÚͼ1ÖÐ×÷³öµãDµÄλÖ㨱£Áô×÷ͼºÛ¼££©£¬ÅжÏËıßÐÎOBDAµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÔÚͼ1ÖУ¬¶¯µãE´ÓµãO³ö·¢£¬ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÑØÏß¶ÎOAÔ˶¯£¬µ½´ïµãAʱֹͣ£»Í¬Ê±£¬¶¯µãF´ÓµãO³ö·¢£¬ÒÔÿÃëa¸öµ¥Î»µÄËÙ¶ÈÑØOB¡úBD¡úDAÔ˶¯£¬µ½´ïµãAʱֹͣ£®ÉèÔ˶¯µÄʱ¼äΪt£¨Ã룩£®
¢Ùµ±t=4ʱ£¬Ö±ÏßEFÇ¡ºÃƽ·ÖËıßÐÎOBDAµÄÃæ»ý£¬ÇóaµÄÖµ£»
¢Úµ±t=5ʱ£¬CE=CF£¬ÇëÖ±½Óд³öaµÄÖµ£®
·ÖÎö £¨1£©×÷ÉäÏßOC£¬½ØÈ¡CD=OC£¬È»ºóÓɶԽÇÏß»¥ÏàÆ½·ÖµÄËıßÐÎÊÇÆ½ÐÐËıßÐνøÐпɵõ½ËıßÐεÄÐÎ×´£»
£¨2£©¢ÙÓÉÖ±ÏßEFÇ¡ºÃƽ·ÖËıßÐÎOBDAµÄÃæ»ý¿ÉÖªÖ±ÏßEF±Ø¹ýC£¬½ÓÏÂÀ´£¬Ö¤Ã÷¡÷OEC¡Õ¡÷DFC£¬´Ó¶ø¿ÉÇóµÃDFµÄ³¤¶È£¬ÓÚÊǵõ½BF=8£¬È»ºóÔÙÓÉÁ½µã¼äµÄ¾àÀ빫ʽÇóµÃOBµÄ³¤£¬´Ó¶ø¿ÉÇóµÃaµÄÖµ£»
¢ÚÏÈÇóµÃµãEµÄ×ø±ê£¬È»ºóÇóµÃECµÄ³¤£¬´Ó¶øµÃµ½CF1µÄ³¤£¬È»ºóÒÀ¾Ý¹´¹É¶¨ÀíµÄÄæ¶¨ÀíÖ¤Ã÷¡ÏOBA=90¡ã£¬ÔÚ¡÷BCF1ÖУ¬ÒÀ¾Ý¹´¹É¶¨Àí¿ÉÇóµÃBF1µÄ³¤£¬´Ó¶ø¿ÉÇóµÃaµÄÖµ£¬ÉèµãF2µÄ×ø±ê£¨b£¬6£©£¬ÓÉCE=CFÁгö¹ØÓÚbµÄ·½³Ì¿ÉÇóµÃµãF2µÄ×ø±ê£¬´Ó¶ø¿ÉÇóµÃaµÄÖµ£¬ÔÚRt¡÷CAF3ÖУ¬È¡µÃAF3µÄ³¤£¬´Ó¶øÇóµÃµãFÔ˶¯µÄ·³Ì£¬ÓÚÊÇ¿ÉÇóµÃaµÄÖµ£®
½â´ð ½â£º£¨1£©ÈçͼËùʾ£º![]()
ËıßÐÎOBDAÊÇÆ½ÐÐËıßÐΣ®
ÀíÓÉÈçÏ£º¡ßµãCΪÏß¶ÎABµÄÖе㣬
¡àCB=CA£®
¡ßµãDÓëÔµãO¹ØÓÚµãC¶Ô³Æ£¬
¡àCO=CD£®
¡àËıßÐÎOBDAÊÇÆ½ÐÐËıßÐΣ®
£¨2£©¢ÙÈçͼ2Ëùʾ£»![]()
¡ßÖ±ÏßEFÇ¡ºÃƽ·ÖËıßÐÎOBDAµÄÃæ»ý£¬
¡àÖ±ÏßEF±Ø¹ýC£¨9£¬3£©£®
¡ßt=4£¬
¡àOE=4£®
¡ßBD¡ÎOA£¬
¡à¡ÏCOE=¡ÏCDF£®
¡ßÔÚ¡÷OECºÍ¡÷DFCÖÐ$\left\{\begin{array}{l}{¡ÏCOE=¡ÏCDF}\\{OC=OD}\\{¡ÏOCE=¡ÏDCF}\end{array}\right.$£¬
¡à¡÷OEC¡Õ¡÷DFC£®
¡àDF=OE=4£®
¡àBF=12-4=8£®
ÓÉÁ½µã¼äµÄ¾àÀ빫ʽ¿ÉÖªOB=$\sqrt{{6}^{2}+{6}^{2}}$=6$\sqrt{2}$£®
¡à4a=6$\sqrt{2}$+8£®
¡àa=2+$\frac{3}{2}$$\sqrt{2}$£®
¢ÚÈçͼ3Ëùʾ£º![]()
¡ßµ±t=5ʱ£¬OE=5£¬
¡àµãEµÄ×ø±ê£¨5£¬0£©£®
ÓÉÁ½µã¼äµÄ¾àÀ빫ʽ¿ÉÖªEC=$\sqrt{£¨9-5£©^{2}+£¨3-0£©^{2}}$=5£®
¡ßCE=CF£¬
¡àCF=5£®
ÓÉÁ½µã¼äµÄ¾àÀ빫ʽ¿ÉÖªOB=BA=6$\sqrt{2}$£¬
ÓÖ¡ßOA=12£®
¡à¡÷OBAΪֱ½ÇÈý½ÇÐΣ®
¡à¡ÏOBA=90¡ã£®
¢ÙÔÚÖ±½Ç¡÷F1BCÖУ¬CF1=5£¬BC=3$\sqrt{2}$£¬
¡àBF1=$\sqrt{7}$£®
¡àOF1=6$\sqrt{2}$-$\sqrt{7}$£®
¡àa=$\frac{6\sqrt{2}-\sqrt{7}}{5}$£®
¢ÚÉèF2µÄ×ø±êΪ£¨b£¬6£©£®ÓÉÁ½µã¼äµÄ¾àÀ빫ʽ¿ÉÖª$\sqrt{£¨9-b£©^{2}+£¨6-3£©^{2}}$=5£®
½âµÃ£»b=5£¨ÉáÈ¥£©»òb=13£®
¡àBF2=13-6=7£®
¡àOB+BF2=6$\sqrt{2}$+7£®
¡àa=$\frac{6\sqrt{2}+7}{5}$£®
¢Û¡ßBO¡ÎAD£¬
¡à¡ÏBAD=¡ÏOBA=90¡ã£®
¡àAF3=$\sqrt{C{{F}_{3}}^{2}-A{C}^{2}}$=$\sqrt{7}$£®
¡àDF3=6$\sqrt{2}$-$\sqrt{7}$£®
¡àOB+BD+DF3=6$\sqrt{2}$+12+6$\sqrt{2}$-$\sqrt{7}$=12$\sqrt{2}$-$\sqrt{7}$+12£®
¡àa=$\frac{12\sqrt{2}-\sqrt{7}+12}{5}$£®
×ÛÉÏËùÊöaµÄֵΪ$\frac{6\sqrt{2}-\sqrt{7}}{5}$»ò$\frac{6\sqrt{2}+7}{5}$»ò$\frac{12\sqrt{2}-\sqrt{7}+12}{5}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊÇËıßÐεÄ×ÛºÏÓ¦Ó㬽â´ð±¾ÌâÖ÷ÒªÓ¦ÓÃÁËÆ½ÐÐËıßÐεÄÅж¨¡¢È«µÈÈý½ÇÐεÄÐÔÖʺÍÅж¨¡¢¹´¹É¶¨ÀíºÍ¹´¹É¶¨ÀíµÄÄæ¶¨ÀíµÄÓ¦Óã¬Á½µã¼äµÄ¾àÀ빫ʽÇóµÃF1B£¬F2D£¬F3AµÄ³¤¶ÈÊǽâÌâµÄ¹Ø¼ü£®
| A£® | 100£¨1+x£© | B£® | 100£¨1+x£©2 | C£® | 100£¨1+x2£© | D£® | 100£¨1+2x£© |
| A£® | $y=\frac{20}{x}$ | B£® | $y=-\frac{20}{x}$ | C£® | $y=\frac{12}{x}$ | D£® | $y=-\frac{12}{x}$ |