ÌâÄ¿ÄÚÈÝ
8£®£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹¡÷PCDÊÇÒÔCDΪÑüµÄµÈÑüÈý½ÇÐΣ¿Èç¹û´æÔÚ£¬Ö±½Óд³öPµãµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©µãEÊÇÏß¶ÎBCÉϵÄÒ»¸ö¶¯µã£¬¹ýµãE×÷xÖáµÄ´¹ÏßÓëÅ×ÎïÏßÏཻÓÚµãF£¬µ±µãEÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬ËıßÐÎCDBFµÄÃæ»ý×î´ó£¿Çó³öËıßÐÎCDBFµÄ×î´óÃæ»ý¼°´ËʱEµãµÄ×ø±ê£®
·ÖÎö £¨1£©ÀûÓôý¶¨ÏµÊý·¨×ª»¯Îª½â·½³Ì×é¼´¿É£®
£¨2£©Èçͼ1ÖУ¬·ÖÁ½ÖÖÇéÐÎÌÖÂÛ¢Ùµ±CP=CDʱ£¬¢Úµ±DP=DCʱ£¬·Ö±ðÇó³öµãP×ø±ê¼´¿É£®
£¨3£©Èçͼ2ÖУ¬×÷CM¡ÍEFÓÚM£¬ÉèE£¨a£¬-$\frac{1}{2}a$+2£©£¬F£¨a£¬-$\frac{1}{2}$a2+$\frac{3}{2}$a+2£©£¬ÔòEF=-$\frac{1}{2}$a2+$\frac{3}{2}$a+2-£¨-$\frac{1}{2}a$+2£©=-$\frac{1}{2}$a2+2a£¬£¨0¡Üa¡Ü4£©£¬¸ù¾ÝSËıßÐÎCDBF=S¡÷BCD+S¡÷CEF+S¡÷BEF=$\frac{1}{2}$•BD•OC+$\frac{1}{2}$•EF•CM+$\frac{1}{2}$•EF•BN£¬¹¹½¨¶þ´Îº¯Êý£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖʼ´¿É½â¾öÎÊÌ⣮
½â´ð ½â£º£¨1£©ÓÉÌâÒâ$\left\{\begin{array}{l}{a-\frac{3}{2}+c=0}\\{c=2}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{c=2}\end{array}\right.$£¬
¡à¶þ´Îº¯ÊýµÄ½âÎöʽΪy=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2£®
£¨2£©´æÔÚ£®Èçͼ1ÖУ¬![]()
¡ßC£¨0£¬2£©£¬D£¨$\frac{3}{2}$£¬0£©£¬
¡àCD=$\sqrt{{2}^{2}+£¨\frac{3}{2}£©^{2}}$=$\frac{5}{2}$£¬
µ±CP=CDʱ£¬P1£¨$\frac{3}{2}$£¬4£©£¬
µ±DP=DCʱ£¬P2£¨$\frac{3}{2}$£¬$\frac{5}{2}$£©£¬P3£¨$\frac{3}{2}$£¬-$\frac{5}{2}$£©£®
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄµãP×ø±êΪ£¨$\frac{3}{2}$£¬4£©»ò£¨$\frac{3}{2}$£¬$\frac{5}{2}$£©»ò£¨$\frac{3}{2}$£¬-$\frac{5}{2}$£©£®
£¨3£©Èçͼ2ÖУ¬×÷CM¡ÍEFÓÚM£¬![]()
¡ßB£¨4£¬0£©£¬C£¨0£¬2£©£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=-$\frac{1}{2}x+2$£¬ÉèE£¨a£¬-$\frac{1}{2}a$+2£©£¬F£¨a£¬-$\frac{1}{2}$a2+$\frac{3}{2}$a+2£©£¬
¡àEF=-$\frac{1}{2}$a2+$\frac{3}{2}$a+2-£¨-$\frac{1}{2}a$+2£©=-$\frac{1}{2}$a2+2a£¬£¨0¡Üa¡Ü4£©£¬
¡ßSËıßÐÎCDBF=S¡÷BCD+S¡÷CEF+S¡÷BEF=$\frac{1}{2}$•BD•OC+$\frac{1}{2}$•EF•CM+$\frac{1}{2}$•EF•BN
=$\frac{5}{2}$+$\frac{1}{2}$a£¨-$\frac{1}{2}$a2+2a£©+$\frac{1}{2}$£¨4-a£©£¨-$\frac{1}{2}$a2+2a£©
=-a2+4a+$\frac{5}{2}$
=-£¨a-2£©2+$\frac{13}{2}$£¬
¡àa=2ʱ£¬ËıßÐÎCDBFµÄÃæ»ý×î´ó£¬×î´óֵΪ$\frac{13}{2}$£¬
¡àE£¨2£¬1£©£®
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯ÊýµÄÓ¦Óᢴý¶¨ÏµÊý·¨£¬ËıßÐεÄÃæ»ýµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬ѧ»á¹¹½¨¶þ´Îº¯Êý½â¾ö×îÖµÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮