题目内容

8.已知二次函数y=2(x-3)2+1.下列说法:
①其图象的开口向下;
②其图象的对称轴为直线x=-3;
③其图象顶点坐标为(3,-1);
④当x<3时,y随x的增大而减小.
其中正确的说法有(  )
A.4个B.3个C.2个D.1个

分析 根据二次函数的性质得二次函数y=2(x-3)2+1的开口向上,对称轴为直线x=3,抛物线的顶点坐标为(3,1);当x<3时,y随x的增大而减小;当x>3时,y随x的增大而增大,然后依次对各命题进行判断.

解答 解:抛物线y=2(x-3)2+1,
因为a>0,则抛物线开口向上,所以①错误;
抛物线的对称轴为直线x=3,所以②错误;
抛物线的顶点坐标为(3,1),所以③错误;
当x<3时,y随x的增大而减小,所以④正确.
故选D.

点评 本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-$\frac{b}{2a}$,$\frac{4ac-{b}^{2}}{4a}$),对称轴直线x=-$\frac{b}{2a}$,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-$\frac{b}{2a}$时,y随x的增大而减小;x>-$\frac{b}{2a}$时,y随x的增大而增大;x=-$\frac{b}{2a}$时,y取得最小值$\frac{4ac-{b}^{2}}{4a}$,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-$\frac{b}{2a}$时,y随x的增大而增大;x>-$\frac{b}{2a}$时,y随x的增大而减小;x=-$\frac{b}{2a}$时,y取得最大值$\frac{4ac-{b}^{2}}{4a}$,即顶点是抛物线的最高点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网