题目内容
11.仔细解答下列方程组.(1)$\left\{\begin{array}{l}{y=3x-2}\\{6x-3y=5}\end{array}\right.$
(2)$\left\{\begin{array}{l}{\frac{x}{2}+\frac{y}{3}=2}\\{2x+3y=28}\end{array}\right.$
(3)$\left\{\begin{array}{l}{5x-4y+4z=13}\\{2x+7y-3z=19}\\{3x+2y-z=18}\end{array}\right.$.
分析 (1)方程组利用代入消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可;
(3)方程组利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{y=3x-2①}\\{6x-3y=5②}\end{array}\right.$,
把①代入②得:6x-9x+6=5,即x=$\frac{1}{3}$,
把x=$\frac{1}{3}$代入①得:y=-1,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=-1}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{3x+2y=12①}\\{2x+3y=28②}\end{array}\right.$,
①×3-②×2得:5x=-40,即x=-8,
把x=-8代入①得:y=18,
则方程组的解为$\left\{\begin{array}{l}{x=-8}\\{y=18}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{5x-4y+4z=13①}\\{2x+7y-3z=19②}\\{3x+2y-z=18③}\end{array}\right.$,
①+③×4得:17x+4y=85④,
②-③×3得:-7x+y=-35⑤,
④-⑤×4得:45x=225,即x=5,
把x=5代入⑤得:y=0,
把x=5,y=0代入①得:z=-3,
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=0}\\{z=-3}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
| A. | (7,0) | B. | (7.5,0) | C. | (8,0) | D. | (8.5,0) |
| A. | m<-1 | B. | m>-1 | C. | m=1 | D. | m<0 |