题目内容
10.分析 求出∠ABP=∠ACP=90°,根据HL推出Rt△ABP≌Rt△ACP,根据全等三角形的性质得出∠BPD=∠CPD,根据SAS推出△BPD≌△CPD,即可得出答案.
解答 证明:∵PB⊥AB,PC⊥AC,
∴∠ABP=∠ACP=90°,
在Rt△ABP和Rt△ACP中,
$\left\{\begin{array}{l}{AP=AP}\\{PB=PC}\end{array}\right.$,
∴Rt△ABP≌Rt△ACP(HL),
∴∠BPD=∠CPD,
在△BPD和△CPD中,
$\left\{\begin{array}{l}{PB=PC}\\{∠BPD=∠CPD}\\{PD=PD}\end{array}\right.$,
∴△BPD≌△CPD,
∴∠BDP=∠CDP.
点评 本题考查了全等三角形的性质和判定的应用,掌握全等三角形的判定定理:SAS,ASA,AAS,SSS,HL,以及性质:全等三角形的对应边相等,对应角相等解决问题.
练习册系列答案
相关题目