题目内容

10.如图所示,已知PA平分∠BAC,PB⊥AB,PC⊥AC,D是AP上的一点.求证:∠BDP=∠CDP.

分析 求出∠ABP=∠ACP=90°,根据HL推出Rt△ABP≌Rt△ACP,根据全等三角形的性质得出∠BPD=∠CPD,根据SAS推出△BPD≌△CPD,即可得出答案.

解答 证明:∵PB⊥AB,PC⊥AC,
∴∠ABP=∠ACP=90°,
在Rt△ABP和Rt△ACP中,
$\left\{\begin{array}{l}{AP=AP}\\{PB=PC}\end{array}\right.$,
∴Rt△ABP≌Rt△ACP(HL),
∴∠BPD=∠CPD,
在△BPD和△CPD中,
$\left\{\begin{array}{l}{PB=PC}\\{∠BPD=∠CPD}\\{PD=PD}\end{array}\right.$,
∴△BPD≌△CPD,
∴∠BDP=∠CDP.

点评 本题考查了全等三角形的性质和判定的应用,掌握全等三角形的判定定理:SAS,ASA,AAS,SSS,HL,以及性质:全等三角形的对应边相等,对应角相等解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网