题目内容
9.分析 根据三角形的中位线定理得出EF=$\frac{1}{2}$DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB,从而求得EF的最大值.
解答 解:∵ED=EM,MF=FN,
∴EF=$\frac{1}{2}$DN,
∴DN最大时,EF最大,
∵N与B重合时DN最大,
此时DN=DB=$\sqrt{A{D}^{2}+A{B}^{2}}$=6,
∴EF的最大值为:3.
故答案为:3.
点评 本题考查了三角形中位线定理,勾股定理的应用,熟练掌握相关定理是解题的关键.
练习册系列答案
相关题目
19.
我市某中学对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业的时间不超过1.5小时.该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出如图所示的频数分布表和频数分布直方图的一部分.
(1)求表中a,b的值;
(2)补全频数分布直方图;
(3)请你估算该校1400名初中学生中,约有多少名学生在1.5小时以内完成了家庭作业.
| 时间/时 | 频数 | 百分比 |
| 0≤t<0.5 | 4 | 0.1 |
| 0.5≤t<1 | a | 0.3 |
| 1≤t<1.5 | 10 | 0.25 |
| 1.5≤t<2 | 8 | b |
| 2≤t<2.5 | 6 | 0.15 |
| 合计 | 1 |
(2)补全频数分布直方图;
(3)请你估算该校1400名初中学生中,约有多少名学生在1.5小时以内完成了家庭作业.