题目内容

13.∠AOB=80°,∠COD=40°,OF为∠AOD的角平分线.
(1)如图1,若∠COF=10°,则∠BOD=20°;若∠COF=m°,则∠BOD=2m°;猜想:∠BOD与∠COF的数量关系为∠BOD=2∠COF.
(2)当∠COD绕点O按逆时针旋转至图(2)的位置时,(1)的数量关系是否仍然成立?请说明理由.
(3)如图3,在(2)的条件下,在∠BOC中作射线OE,使∠BOE=20°,且∠EOF=3∠EOC,直接写出∠BOD=16°.

分析 (1)由已知求出∠DOF=30°,由角平分线得出∠AOF=∠DOF=30°,得出∠AOD=60°,求出∠BOD=∠AOB-∠AOD=20°;
若∠COF=m°,则∠DOF=40°-m°,由角平分线得出∠AOF=∠DOF=40°-m°,得出∠AOD=80°-2m°,得出∠BOD=∠AOB-∠AOD=2m°,即可得出结论;
(3)设∠EOC=x,则∠EOF=3x,得出∠DOF=∠COD+∠COF=40°+2x,由角平分线得出∠AOF=∠DOF=40°+2x,由∠AOB=80°得出方程,解方程求出x=4°,即可得出结果.

解答 解:(1)∵∠COD=40°,∠COF=10°,
∴∠DOF=30°,
∵OF为∠AOD的角平分线.
∴∠AOF=∠DOF=30°,
∴∠AOD=60°,
∴∠BOD=∠AOB-∠AOD=20°;
∵∠COD=40°,∠COF=m°,
∴∠DOF=40°-m°,
∵OF为∠AOD的角平分线.
∴∠AOF=∠DOF=40°-m°,
∴∠AOD=80°-2m°,
∴∠BOD=∠AOB-∠AOD=2m°,
∴∠BOD=2∠COF;
故答案为:20°,2m°,∠BOD=2∠COF;
(3)设∠EOC=x,则∠EOF=3x,
∴∠DOF=∠COD+∠COF=40°+2x,
∵OF为∠AOD的角平分线.
∴∠AOF=∠DOF=40°+2x,
∵∠AOB=80°,
∴40°+2x+x+2x+20°=80°,
解得:x=4°,
∴∠BOD=∠COD-∠BOE-∠EOC=40°-20°-4°=16°;
故答案为:16°.

点评 本题考查了旋转的性质、角平分线的定义以及角的计算;熟练掌握角平分线的定义和角之间的数量关系是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网