题目内容


已知∠AOB内部有三条射线,其中OE平分∠BOC,OF平分∠AOC.

(1)如图1,若∠AOB=90°,∠AOC=30°,求EOF的度数;

(2)如图2,若∠AOB=α,求∠EOF的度数(用含α的式子表示);

(3)若将题中的“OE平分∠BOC,OF平分∠AOC”的条件改为“∠EOB=∠BOC,∠COF=∠AOC”,且∠AOB=α,求∠EOF的度数(用含α的式子表示)

 


【考点】角的计算;角平分线的定义.

【分析】(1)首先求得∠BOC的度数,然后根据角的平分线的定义和角的和差可得∠EOF=∠EOC+∠COF即可求解;

(2)根据角的平分线的定义和角的和差可得∠EOF=∠EOC+∠COF=∠BOC+∠AOC=(∠BOC+∠AOC),即可求解;

(3)根据角的等分线的定义可得∠EOF=∠EOC+∠COF=∠BOC+∠AOC=(∠BOC+∠AOC)=∠AOB,即可求解.

【解答】解:(1)∠BOC=∠AOB﹣∠AOC=90°﹣30°=60°,

∵OE平分∠BOC,OF平分∠AOC,

∴∠EOC=∠BOC=×60°=30°,∠COF=∠AOC=×30°=15°,

∴∠EOF=∠EOC+∠COF=30°+15°=45°;

(2)∵OE平分∠BOC,OF平分∠AOC,

∴∠EOC=∠BOC,∠COF=∠AOC,

∴∠EOF=∠EOC+∠COF=∠BOC+∠AOC=(∠BOC+∠AOC)=∠AOB=a;

(3)∵∠EOB=∠BOC,

∴∠EOC=∠BOC,

又∵∠COF=∠AOC,

∴∠EOF=∠EOC+∠COF=∠BOC+∠AOC=(∠BOC+∠AOC)=∠AOB=a.

【点评】本题考查了角度的计算,理解角的平分线的定义以及角度的和、差之间的关系是关键.

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网