题目内容

8.如图所示,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,BE=6cm,则AC等于(  )
A.6cmB.5cmC.4cmD.3cm

分析 根据三角形内角和定理求出∠BAC,根据线段垂直平分性质求出BE=AE=6cm,求出∠EAB=∠B=15°,求出∠EAC,求出∠AEC,根据含30°角的直角三角形性质求出即可.

解答 解:∵在△ABC中,∠ACB=90°,∠B=15°,
∴∠BAC=90°-15°=75°,
∵DE垂直平分AB,交BC于点E,BE=6cm,
∴BE=AE=6cm,
∴∠EAB=∠B=15°,
∴∠EAC=75°-15°=60°,
∵∠C=90°,
∴∠AEC=30°,
∴AC=$\frac{1}{2}$AE=$\frac{1}{2}×$6cm=3cm,
故选D.

点评 本题考查了线段垂直平分线性质,含30°角的直角三角形性质,等腰三角形的性质,三角形内角和定理的应用,能求出∠AEC的度数和AF=BF是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网