题目内容


一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=(  )

A.90°   B.100°  C.130°  D.180°


B【考点】三角形内角和定理.

【分析】设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.

【解答】解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,

∠ABC=180°﹣60°﹣∠3=120°﹣∠3,

∠ACB=180°﹣60°﹣∠2=120°﹣∠2,

在△ABC中,∠BAC+∠ABC+∠ACB=180°,

∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,

∴∠1+∠2=150°﹣∠3,

∵∠3=50°,

∴∠1+∠2=150°﹣50°=100°.

故选:B.

【点评】本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网