题目内容

1.如图所示,已知△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则下列三个结论①AS=AR;②QP∥AR;③△BRP≌△CQP中(  )
A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确

分析 根据角平分线性质求出∠PAB=∠PAC,∠PSA=∠PRA=90°,根据AAS推出△PAR≌△PAS,根据全等三角形的性质得出AR=AS,根据等腰三角形性质推出∠CAP=∠APQ,推出∠BAP=∠APQ,根据平行线的性质得出PQ∥AB,最后根据全等三角形的判定判断③即可.

解答 解:∵PR=PS,PR⊥AB于R,PS⊥AC于S,
∴∠PAB=∠PAC,∠PSA=∠PRA=90°,
在△PAR和△PAS中,
$\left\{\begin{array}{l}{∠PAR=∠PAS}\\{∠PRA=∠PSA}\\{AP=AP}\end{array}\right.$,
∴△PAR≌△PAS(AAS),
∴AR=AS,∴①正确;
∵AQ=PQ,
∠CAP=∠APQ,
∵∠CAP=∠BAP,
∴∠BAP=∠APQ,
∴PQ∥AB,∴②正确;
∵PR⊥AB,PS⊥AC,
∴∠PRB=∠PSC=90°,
∴PQ>PS,
∵PR=PS,
∴PQ>PR,
∴不能推出△BRP≌△CQP,∴③错误.
故选B.

点评 本题考查了全等三角形的性质和判定,角平分线性质,等腰三角形的性质的应用,能推出△PAR≌△PAS是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网