题目内容

已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形.

(1)求过A、B、C三点的抛物线的解析式;

(2)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB的最大面积;若没有,请说明理由.

(1)y= -x2+2x+3(2)存在,() 【解析】试题分析:(1)求得直线y=3x+3与坐标轴的两交点坐标,然后根据OB=OA即可求得点B的坐标,然后利用待定系数法求得经过A、B、C三点的抛物线的解析式即可; (2)首先利用待定系数法求得直线AB的解析式,然后根据CD∥AB得到两直线的k值相等,根据直线CD经过点C求得直线CD的解析式,然后求得直线CD和抛物线的交点坐标即可; ...
练习册系列答案
相关题目

因式分【解析】

(1)20a3﹣30a2

(2)16﹣(2a+3b)2

(3)﹣16x2y2+12xy3z

(4)5x2y﹣25x2y2+40x3y

(5)x2(a﹣b)2﹣y2(b﹣a)2

(6)(a2+b2)2﹣4a2b2

(7)18b(a﹣b)2+12(b﹣a)3

(8)x(x2+1)2﹣4x3

(9)(x2﹣2x)2﹣3(x2﹣2x)

(10)(2x﹣1)2﹣6(2x﹣1)+9

(11)16x4﹣72x2y2+81y4

(12)a5﹣a

(13)25(x+y)2﹣9(x﹣y)2

(14)m2﹣3m﹣28

(15)x2+x﹣20.

(1)10a2(2a﹣3);(2)(4+2a+3b)(4﹣2a﹣3b); (3)﹣4xy2(4x﹣3yz); (4)5x2y(1﹣5y+8x); (5)(a﹣b)2(x+y)(x﹣y); (6)(a+b)2(a﹣b)2; (7)6(b﹣a)2(5b﹣2a); (8)x(x+1)2(x﹣1)2; (9)x(x﹣2)(x﹣3)(x+1); (10)4(x...

如图,在△ABC中,∠B≠∠C.求证:AB≠AC.

见解析 【解析】试题分析:首先假设AB=AC,从而得出与已知条件矛盾,从而得出答案. 试题解析:假设AB=AC, 则∠B=∠C,∴与已知矛盾,∴AB≠AC.

如图,一枚运载火箭从地面处发射,当火箭到达点时,从地面处的雷达站测得的距离是,仰角是,后,火箭到达点,此时测得的距离是,仰角为,这枚火箭从点到点的平均速度是多少?(精确到)

这枚火箭从点到点的平均速度是 【解析】试题分析:首先根据Rt△BCO中∠BCO的正弦值得出OB的长度,然后根据Rt△ACO中∠ACO的正弦值得出OA的长度,从而得出答案. 试题解析:在Rt中, ∴ 在Rt中, ∴ ∴ 答:这枚火箭从点到点的平均速度是.

如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过 秒,四边形APQC的面积最小.

3 【解析】 试题分析:根据等量关系“四边形APQC的面积=三角形ABC的面积﹣三角形PBQ的面积”列出函数关系 最小值. 设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Smm2, 则有:S=S△ABC﹣S△PBQ==4t2﹣24t+144=4(t﹣3)2+108. ∵4>0 ∴当t=3s时,S取得最小值.

如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0) , 且x1+x2=4, .

(1)求抛物线的代数表达式;

(2)设抛物线与y轴交于C点,求直线BC的表达式;

(3)求△ABC的面积.

(1)该抛物线的代数表达式为y=-x2+4x-3;(2)直线BC的代数表达式为y=x-3;(3)S△ABC=3. 【解析】试题分析:(1)先解方程组, 求得x1、x2的值,再代入抛物线y=-x2+bx+c即可求得抛物线的代数表达式; (2)设直线BC的表达式为y=kx+m,先求得抛物线与y轴的交点坐标,再根据待定系数法即可求得直线BC的表达式; (3)分别求出AB、OC的长,再根...

抛物线y=2(x-3)2+1的顶点坐标是( )

A. (3,1) B. (3,-1) C. (-3,1) D. (-3,-1)

A 【解析】利用抛物线顶点式的特点直接写出顶点坐标是(h,k),可知抛物线y=2(x-3)2+1的顶点坐标是(3,1). 故选:A.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网