题目内容

19.如图,一次函数y=-kx+n(k≠0)与x轴、y轴分别交于A、B两点,与反比例函数y=$\frac{k}{x}$(k≠0)交于C、D两点,且C、D两点分别是线段AB的三等分点,若S△AOB=$\frac{9}{4}$,则n=(  )
A.-$\sqrt{2}$B.-$\frac{3}{2}\sqrt{2}$C.-2$\sqrt{2}$D.-$\frac{5}{2}\sqrt{2}$

分析 令x=0,则y=-kx+n=n,令y=0,则0=-kx+n,即x=$\frac{n}{k}$,于是得到A($\frac{n}{k}$,0),B(0,n),求得OA=$\frac{n}{k}$,OB=-n,根据三角形的面积列方程$\frac{1}{2}$×$\frac{n}{k}$(-n)=$\frac{9}{4}$,得到$\frac{n}{k}=\frac{9}{2n}$,于是得到(-$\frac{9}{2n}$,0),由于C、D两点分别是线段AB的三等分点,得到C(-$\frac{3}{2n}$,$\frac{2n}{3}$)求得k=$\frac{3}{2n}$•$\frac{2n}{3}$=-1,得到△AOB是等腰直角三角形,即可得到结论.

解答 解:令x=0,则y=-kx+n=n,令y=0,则0=-kx+n,即x=$\frac{n}{k}$,
∴A($\frac{n}{k}$,0),B(0,n),
∴OA=$\frac{n}{k}$,OB=-n,
∵S△AOB=$\frac{9}{4}$,
∴$\frac{1}{2}OA•OB=\frac{9}{4}$,
即$\frac{1}{2}$×$\frac{n}{k}$(-n)=$\frac{9}{4}$,
∴k=$\frac{2}{9}{n}^{2}$,
∴$\frac{n}{k}=\frac{9}{2n}$,
∴A(-$\frac{9}{2n}$,0),
∵C、D两点分别是线段AB的三等分点,
∴C(-$\frac{3}{2n}$,$\frac{2n}{3}$)
∴k=$\frac{3}{2n}$•$\frac{2n}{3}$=-1,
∴OA=-n,
∴OA=OB,
∴△AOB是等腰直角三角形,
∴$\frac{1}{2}$(-n)2=$\frac{9}{4}$,
∴-n=$\frac{3\sqrt{2}}{2}$,
∴n=-$\frac{3\sqrt{2}}{2}$,
故选B.

点评 此题考查了反比例函数与一次函数的交点问题.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网